十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
本文实例为大家分享了python dlib人脸识别的具体代码,供大家参考,具体内容如下
创新互联从2013年开始,先为向阳等服务建站,向阳等地企业,进行企业商务咨询服务。为向阳企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。import matplotlib.pyplot as plt import dlib import numpy as np import glob import re #正脸检测器 detector=dlib.get_frontal_face_detector() #脸部关键形态检测器 sp=dlib.shape_predictor(r"D:\LB\JAVASCRIPT\shape_predictor_68_face_landmarks.dat") #人脸识别模型 facerec = dlib.face_recognition_model_v1(r"D:\LB\JAVASCRIPT\dlib_face_recognition_resnet_model_v1.dat") #候选人脸部描述向量集 descriptors=[] photo_locations=[] for photo in glob.glob(r'D:\LB\JAVASCRIPT\faces\*.jpg'): photo_locations.append(photo) img=plt.imread(photo) img=np.array(img) #开始检测人脸 dets=detector(img,1) for k,d in enumerate(dets): #检测每张照片中人脸的特征 shape=sp(img,d) face_descriptor=facerec.compute_face_descriptor(img,shape) v=np.array(face_descriptor) descriptors.append(v) #输入的待识别的人脸处理方法相同 img=plt.imread(r'D:\test_photo10.jpg') img=np.array(img) dets=detector(img,1) #计算输入人脸和已有人脸之间的差异程度(比如用欧式距离来衡量) differences=[] for k,d in enumerate(dets): shape=sp(img,d) face_descriptor=facerec.compute_face_descriptor(img,shape) d_test=np.array(face_descriptor) #计算输入人脸和所有已有人脸描述向量的欧氏距离 for i in descriptors: distance=np.linalg.norm(i-d_test) differences.append(distance) #按欧式距离排序 欧式距离最小的就是匹配的人脸 candidate_count=len(photo_locations) candidates_dict=dict(zip(photo_locations,differences)) candidates_dict_sorted=sorted(candidates_dict.items(),key=lambda x:x[1]) #matplotlib要正确显示中文需要设置 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['figure.figsize'] = (20.0, 70.0) ax=plt.subplot(candidate_count+1,4,1) ax.set_title("输入的人脸") ax.imshow(img) for i,(photo,distance) in enumerate(candidates_dict_sorted): img=plt.imread(photo) face_name="" photo_name=re.search(r'([^\\]*)\.jpg$',photo) if photo_name: face_name=photo_name[1] ax=plt.subplot(candidate_count+1,4,i+2) ax.set_xticks([]) ax.set_yticks([]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) if i==0: ax.set_title("最匹配的人脸\n\n"+face_name+"\n\n差异度:"+str(distance)) else: ax.set_title(face_name+"\n\n差异度:"+str(distance)) ax.imshow(img) plt.show()