十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
我就废话不多说了,直接上代码吧!
成都创新互联公司-专业网站定制、快速模板网站建设、高性价比轵城网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式轵城网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖轵城地区。费用合理售后完善,10余年实体公司更值得信赖。import matplotlib matplotlib.use('Agg') import os from keras.models import load_model import numpy as np from PIL import Image import cv2 #加载模型h6文件 model = load_model("C:\\python\\python3_projects\\cat_dog\\cats_dogs_fifty_thousand.h6") model.summary() #规范化图片大小和像素值 def get_inputs(src=[]): pre_x = [] for s in src: input = cv2.imread(s) input = cv2.resize(input, (150, 150)) input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) pre_x.append(input) # input一张图片 pre_x = np.array(pre_x) / 255.0 return pre_x #要预测的图片保存在这里 predict_dir = 'C:\python\python3_projects\cat_dog\pics' #这个路径下有两个文件,分别是cat和dog test = os.listdir(predict_dir) #打印后:['cat', 'dog'] print(test) #新建一个列表保存预测图片的地址 images = [] #获取每张图片的地址,并保存在列表images中 for testpath in test: for fn in os.listdir(os.path.join(predict_dir, testpath)): if fn.endswith('jpg'): fd = os.path.join(predict_dir, testpath, fn) print(fd) images.append(fd) #调用函数,规范化图片 pre_x = get_inputs(images) #预测 pre_y = model.predict(pre_x) print(pre_y)