十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
TensorFlow中怎么搭建JupyterLab 环境,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
创新互联建站是专业的盂县网站建设公司,盂县接单;提供成都做网站、成都网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行盂县网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
Ubuntu 18.04.5 LTS (Bionic Beaver)
ubuntu-18.04.5-desktop-amd64.iso
CUDA 11.2.2
cuda_11.2.2_460.32.03_linux.run
cuDNN 8.1.1
libcudnn8_8.1.1.33-1+cuda11.2_amd64.deb
libcudnn8-dev_8.1.1.33-1+cuda11.2_amd64.deb
libcudnn8-samples_8.1.1.33-1+cuda11.2_amd64.deb
Anaconda Python 3.8
Anaconda3-2020.11-Linux-x86_64.sh
conda activate base
Anaconda 环境里已有,如下查看版本:
jupyter --version
不然,如下进行安装:
conda install -c conda-forge jupyterlab
创建虚拟环境 tf
,再 pip
安装 TensorFlow:
# create virtual environment conda create -n tf python=3.8 -y conda activate tf # install tensorflow pip install --upgrade pip pip install tensorflow
测试:
$ python - < 2021-04-01 11:18:17.719061: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 2.4.1 True 2021-04-01 11:18:18.437590: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set 2021-04-01 11:18:18.437998: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1 2021-04-01 11:18:18.458471: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-04-01 11:18:18.458996: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties: pciBusID: 0000:01:00.0 name: GeForce RTX 2060 computeCapability: 7.5 coreClock: 1.35GHz coreCount: 30 deviceMemorySize: 5.79GiB deviceMemoryBandwidth: 245.91GiB/s 2021-04-01 11:18:18.459034: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 2021-04-01 11:18:18.461332: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11 2021-04-01 11:18:18.461362: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11 2021-04-01 11:18:18.462072: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10 2021-04-01 11:18:18.462200: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10 2021-04-01 11:18:18.462745: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10 2021-04-01 11:18:18.463241: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11 2021-04-01 11:18:18.463353: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8 2021-04-01 11:18:18.463415: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-04-01 11:18:18.463854: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2021-04-01 11:18:18.464170: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0 [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]Solution: Could not load dynamic library 'libcusolver.so.10'
cd /usr/local/cuda/lib64 sudo ln -sf libcusolver.so.11 libcusolver.so.10安装 IPython kernel
在虚拟环境
tf
里,安装ipykernel
与 Jupyter 交互。# install ipykernel (conda new environment) conda activate tf conda install ipykernel -y python -m ipykernel install --user --name tf --display-name "Python TF" # run JupyterLab (conda base environment with JupyterLab) conda activate base jupyter lab另一种方式,可用 nb_conda 扩展,其于笔记里会激活 Conda 环境:
# install ipykernel (conda new environment) conda activate tf conda install ipykernel -y # install nb_conda (conda base environment with JupyterLab) conda activate base conda install nb_conda -y # run JupyterLab jupyter lab最后,访问 http://localhost:8888/ :
关于TensorFlow中怎么搭建JupyterLab 环境问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。
文章题目:TensorFlow中怎么搭建JupyterLab环境
分享路径:http://6mz.cn/article/pohsod.html