快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Pandas基本文本数据的处理方法

本篇内容主要讲解“Pandas基本文本数据的处理方法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pandas基本文本数据的处理方法”吧!

成都创新互联公司是一家集网站建设,枣庄企业网站建设,枣庄品牌网站建设,网站定制,枣庄网站建设报价,网络营销,网络优化,枣庄网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

1.# 系列和索引配有一组字符串处理方法,使它容易操作数组的每个元素。或许最重要的是,这些方法自动排除失踪/ NA值。这里有一些字符串方法的例子:In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])#小写方法In [2]: s.str.lower()
Out[2]: 
0       a1       b2       c3    aaba4    baca5     NaN6    caba7     dog8     cat
dtype: object#大写方法In [3]: s.str.upper()
Out[3]: 
0       A1       B2       C3    AABA4    BACA5     NaN6    CABA7     DOG8     CAT
dtype: object#显示字符串的长度In [4]: s.str.len()
Out[4]: 
0    1.01    1.02    1.03    4.04    4.05    NaN6    4.07    3.08    3.0dtype: float64

In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])#去除两边的空格In [6]: idx.str.strip()
Out[6]: Index([u'jack', u'jill', u'jesse', u'frank'], dtype='object')#去除左边的空格In [7]: idx.str.lstrip()
Out[7]: Index([u'jack', u'jill ', u'jesse ', u'frank'], dtype='object')#去除右边的空格In [8]: idx.str.rstrip()
Out[8]: Index([u' jack', u'jill', u' jesse', u'frank'], dtype='object')# df.columns一个index对象,所以我们科研用.str存取器In [9]: df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '],
   ...:                   index=range(3))
   ...: 

In [10]: df
Out[10]: 
    Column A    Column B 
0    0.017428    0.0390491   -2.240248    0.8478592   -1.342107    0.368828#去除列名的空格In [11]: df.columns.str.strip()
Out[11]: Index([u'Column A', u'Column B'], dtype='object')#列名小写In [12]: df.columns.str.lower()
Out[12]: Index([u' column a ', u' column b '], dtype='object')#将列名先去空,再小写,再将空格替换为"_"In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
In [14]: df
Out[14]: 
   column_a  column_b0  0.017428  0.0390491 -2.240248  0.8478592 -1.342107  0.3688282.#拆分和替换字符In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])#以_拆分,返回的是列表In [16]: s2.str.split('_')
Out[16]: 
0    [a, b, c]1    [c, d, e]2          NaN3    [f, g, h]
dtype: object#元素可以通过str.get()方法来获取In [17]: s2.str.split('_').str.get(1)
Out[17]: 
0      b1      d2    NaN3      g
dtype: object#也可以通过str[]来获取In [18]: s2.str.split('_').str[1]
Out[18]: 
0      b1      d2    NaN3      g
dtype: object#可以通过设置expand参数直接返回一个数据框In [19]: s2.str.split('_', expand=True)
Out[19]: 
     0     1     20    a     b     c1    c     d     e2  NaN  None  None3    f     g     h#可以通过设置n参数来设置分割点的个数In [20]: s2.str.split('_', expand=True, n=1)
Out[20]: 
     0     10    a   b_c1    c   d_e2  NaN  None3    f   g_h#rsplit想对与split来说是从相反的方向(reverse direction)来分割In [21]: s2.str.rsplit('_', expand=True, n=1)
Out[21]: 
     0     10  a_b     c1  c_d     e2  NaN  None3  f_g     h#像replace和findall这样的方法可以使用正则表达式In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
   ....:                '', np.nan, 'CABA', 'dog', 'cat'])
   ....: 

In [23]: s3
Out[23]: 
0       A1       B2       C3    Aaba4    Baca5        6     NaN7    CABA8     dog9     cat
dtype: object

In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Out[24]: 
0           A1           B2           C3    XX-XX ba4    XX-XX ca5            6         NaN7    XX-XX BA8      XX-XX 
9     XX-XX t
dtype: object3.#通过str[]来索引In [29]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
   ....:                'CABA', 'dog', 'cat'])
   ....: 

In [30]: s.str[0]
Out[30]: 
0      A1      B2      C3      A4      B5    NaN6      C7      d8      c
dtype: object

In [31]: s.str[1]
Out[31]: 
0    NaN1    NaN2    NaN3      a4      a5    NaN6      A7      o8      a
dtype: object4.#提取字符串#如果提取的规则结果有多组,则会返回数据框,不匹配的返回NaNIn [32]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Out[32]: 
     0    10    a    11    b    22  NaN  NaN#注意正则表达式中的任何捕获组名称将用于列名,否则捕获的组名将被当作列名In [33]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P[ab])(?P\d)', expand=False)
Out[33]: 
  letter digit0      a     11      b     22    NaN   NaN#参数expand=True在一组返回值的情况下,返回数据框In [35]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
Out[35]: 
     00    11    22  NaN#参数expand=False在一组返回值的情况下,返回序列(Series)In [36]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Out[36]: 
0      11      22    NaN
dtype: object#参数expand=True作用在索引上时,一组数据返回数据框In [37]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])

In [38]: s
Out[38]: 
A11    a1
B22    b2
C33    c3
dtype: object

In [39]: s.index.str.extract("(?P[a-zA-Z])", expand=True)
Out[39]: 
  letter0      A1      B2      C#参数expand=False作用在索引上时,一组数据返回索引In [40]: s.index.str.extract("(?P[a-zA-Z])", expand=False)
Out[40]: Index([u'A', u'B', u'C'], dtype='object', name=u'letter')#下图表示了在expand=False时,各种情况下index,Series返回值的情况 1 group    >1 group
Index      Index    ValueError
Series    Series    DataFrame5.#提取所有匹配的字符串#extract只返回第一个匹配到的字符In [42]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
In [43]: s
Out[43]: 
A    a1a2
B      b1
C      c1
dtype: object
In [44]: two_groups = '(?P[a-z])(?P[0-9])'In [45]: s.str.extract(two_groups, expand=True)
Out[45]: 
  letter digit
A      a     1B      b     1C      c     1#extractall将匹配所有返回的字符In [46]: s.str.extractall(two_groups)
Out[46]: 
        letter digit
  match             
A 0          a     1
  1          a     2B 0          b     1C 0          c     16.#测试是否包含某规则In [56]: pattern = r'[a-z][0-9]'In [57]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[57]: 
0    False1    False2    False3    False4    Falsedtype: bool7. #match, contains, startswith, and endswith可以设置缺失值是True还是falseIn [59]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [60]: s4.str.contains('A', na=False)
Out[60]: 
0     True1    False2    False3     True4    False5    False6     True7    False8    Falsedtype: bool8.#提取伪变量In [61]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])

In [62]: s.str.get_dummies(sep='|')
Out[62]: 
   a  b  c0  1  0  01  1  1  02  0  0  03  1  0  1#获取复杂索引In [63]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])

In [64]: idx.str.get_dummies(sep='|')
Out[64]: 
MultiIndex(levels=[[0, 1], [0, 1], [0, 1]],
           labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]],
           names=[u'a', u'b', u'c'])

到此,相信大家对“Pandas基本文本数据的处理方法”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!


新闻标题:Pandas基本文本数据的处理方法
本文地址:http://6mz.cn/article/pjhjeh.html

其他资讯