十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
最近刚跳槽,到新公司已经干了有两周时间了,这两周时间是过得比较充实的,因为这家新公司是个小公司,以前以单机开发为主,服务器方面我一个人,做两个游戏的服务器开发工作,当然,一个很简单,另一个就相对复杂点,简单的那个是个弱联网游戏,服务器只需要做好数据存档和登录支付验证就好了,而另一个,则是相对复杂的slg游戏,我感觉这是又一款cok,而公司目前并不打算再招服务器了,所以估计这个项目我会一个人干到明年吧,等第一款上线赚钱了,可能会再招服务器。老实说,面试的时候,我就觉得这份工作对我而言是一个挑战,而当我清楚的了解了公司状况之后,我依然决定接受这个挑战。
十年的武川网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整武川建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联公司从事“武川网站设计”,“武川网站推广”以来,每个客户项目都认真落实执行。
说说我之前的经历吧,大四的时候,学校安排来北京培训java(培训没什么丢脸的,出来找工作我也用的真学历真背景,不像某峰互联),之后我去了培训机构推荐的公司实习,那个时候,工资2k,然而工作也干得很开心,跟着前辈学到了不少东西,当时是做微信公众号开发的,我跟着前辈做微信后台开发,当时使用SpringMVC+MyBatis框架,刚接触的时候,我自己学了挺久才弄明白,后来弄明白之后想想,其实挺简单,对于逻辑开发的程序员来说,你只需要弄懂工作流程就好了,页面怎么跳转,跳转怎么传值,数据怎么处理,这些足够了,当然我是个不满足的人,我会去弄明白,为什么用这个框架、为什么不用别的、用这个有什么好处、如果让我自己来做这个后台、我会怎么搭建?带着这些问题,我会试着自己搭建一下后台框架(虽然前期大部分是复制粘贴)。除了框架部分,微信高级接口也是我研究的重点,我会去官方文档看看微信是怎么接入的,然后研究研究前辈的代码是怎么写的,所谓的干一行爱一行大概就是这样吧,当时我觉得,微信开发,是很有前途的,而我们公司用的框架,也是最先进的(后来看来,确实这个框架组合是当前最流行的框架,而当时,微信公众号也确实是当时互联网行业的一个风口,微信后来把h5带起来了,导致现在一个好的h5前端都是供不应求的,薪资很高)。
说了这么多,为什么后来又转行做游戏了呢?其实是这样的,当时在第一家公司,我的上级打算跳槽走了,带走整个下面的技术,而不带实习生,有那么一两个月,实习生就一直闲着没事做,对于我来说,这样过着就太无聊了,我喜欢挑战,于是我投简历,重新找了份实习工作,在一个游戏公司做java服务器开发,公司挺大的,几年前凭借一款slg页游称霸游戏行业(什么游戏我就不说了,说了就知道什么公司了),后来游戏行业往手游发展,这款slg也出了手游版,这一款游戏,几乎支撑了整个公司,再加上后来出的几款手游,公司发展挺好的,我所实习的部门做的是一款mmorpg手游,从实习做到了转正,做了近一年了,然而这款rpg手游的数据却不是太好,第一次封测次日留存23,第二次26(现在这家公司的游戏能达到80多次日留存),七日就更不用说了,而我也能感觉到,作为一款mmo游戏,玩家之间的交互实在太少,从头玩下来,我觉得这是一款单机,失去了mmo的本质,在项目组准备进行第三次封测的时候,我选择了离开,原因很多,不仅仅因为游戏数据不好,也有一些个人原因吧,不过说实话,是这家公司带我走进了游戏行业,我很感谢,我觉得游戏行业是一个非常有前景的行业,甚至比之前我认为最好的微信开发还要好,游戏行业非常暴利,在这家公司工作就能感受到,策划文档中,充满了挖坑预留的计费点,这一块可以正常玩儿,但你如果充钱,你就比别人牛逼。网络游戏,最重要的,就是控制好平民玩家跟普通玩家的占比以及游戏平衡(当意识到公司的游戏如此处心积虑想要坑钱的时候,我突然明白为什么公司的游戏大多被腾讯代理了,为什么腾讯控股,原来如此,没钱玩儿你**,哈哈)。由此也可以看出,游戏的商业化,已经把游戏公司带入了一个固定的模式——无条件坑钱,我觉得已经失去了游戏的本质,我看过一本书,叫《游戏人生》(当时在cocos2014年开发者大会上买的。觉得挺值的),书已经送人了,但内容我看了一大半,从游戏的产生,到玩家的心理,到为什么需要游戏,这本书都诠释的热别好(我觉得游戏策划都应该看看这本书,做良心游戏,拒绝一味坑钱)。啊,突然发现这一段说的有点偏了,说到底,我也只是做游戏服务器开发的,我也改变不了游戏行业,我只要做好我做的。其实大的游戏公司,就应该走这种商业化路线,凭借几款长生命周期的游戏,支撑公司流水。
从转行做游戏之后,我倒是觉得,游戏开发比web开发有趣多了,当然技术上也比web难多了,之前发过一篇讨论,web开发何和游戏开发的区别,,我把我的答案再粘贴一遍(实际上是别人要求我上他的号去回答的,于是我就自己回答了我自己的问题):
1.从第三方支持来说,web后台有很多成熟的第三方框架,开发者不需要关心底层控制器跳转的实现,只需要一个或几个配置文件,就能完成核心控制器的部分,而开发者只需要关注web自身的业务逻辑,将逻辑与框架融合即可,使用框架一方面简化控制层代码,一方面很好的实现了业务逻辑的分层。而游戏后台开发中,因为各种游戏的需求差异性很大,从网络层,到业务逻辑层,各方面都必须根据自己游戏需求搭建适合自己的框架,因此很难有一些通用的东西能提炼出来一款成熟的框架,游戏后台开发基本上需要自己搭建适合自己的框架。
2.从业务逻辑层面来说,web后台基本上逻辑都是大同小异的,或许这一套系统,稍微改改,另一套系统就能用,而游戏就不同了,每个游戏都有自己的特色,根据策划的不同需求而实现不同的逻辑,不过也会有一些通用的模块,但整体上差异性还是很大的。
3.从数据持久化来说,web的数据基本上是很规整的,表与表之间关系很明确,并且以后也不会有太大的变化,而游戏中的数据多种多样,随着开服之后,数据的变化也是多种多样,甚至传统的关系型数据库根本无法满足游戏数据持久化的需求,游戏中有很多状态和数据是需要服务器来保存的,我个人认为,在游戏开发中,nosql比关系型数据库更实用。
4.从通信层来说,web中的用户都是一个个独立的个体,而游戏中是多人在线的一个游戏世界,在这个游戏世界中,玩家与玩家之间需要进行交互,这就需要服务器实时的向所有在线玩家进行消息广播,这一点很损耗服务器性能的,在这方面,游戏后台要比web做更多的处理,游戏服务器是一个IO密集的服务器类型。
以上便是我当时的答案,或许我的见解尚浅,毕竟我做游戏不到一年,不过对于后台开发这块,我还是有一点话语权的,从实习游戏开发开始,我便经历了一个转换的过程,几乎又是一个从零开始的学习过程,从mina框架到protobuffer,这些东西,我相信web开发很少接触(mina作为网络通信框架,web中几乎只有http通信,protobuffer作为通信协议,web最多用json,其实二者形式上差别不大,但数据大小千差万别)。而游戏的逻辑,也是比web复杂得多,不得不说,web后台成熟的第三方框架是做的真的很好。
经历了上家公司的洗礼,我想我对游戏后台开发有了足够的了解,于是我找到了我现在这家公司,这家公司目前只有我一个服务器后台,做两款游戏,一款是塔防类,准备由单机改成弱联网,服务器存档,并做登录支付验证,另一款,是比较庞大的slg手游,是准备带领公司走上巅峰的项目,说一款slg带领一个公司走上巅峰一点儿不为过,我上家公司就是这样的,凭借一款《xxxx》(哈哈,名字不透露),走上人生巅峰。我之所以接受这份工作,是因为我接受挑战,从底层写起,从架构写起,这是作为一年工作经验的我想都不敢想的,不过这是一个挑战自我,证明自我的机会,我愿意接受这个挑战,人生总会有很多爬坑的时候,但爬过了坑,就真的是人生巅峰了。我接受这个工作的另一个原因,就是公司发展确实不错,以前做的单机,都是很火的(虽然我认为我自己一个人也能做,我也是学过cocos的),而现在公司也准确的把握了游戏行业的风口——slg,coc和cok的成功案例就能证明一切,mmorpg也不一定能做起来了,moba倒是有可能,但你要跟lol做不到80%的相似,我估计没人愿意在手机玩儿moba,slg或许是性价比最高的了。这么有挑战的工作,还要从架构写起,这样的挑战,我喜欢!
说说互联网业的书吧,我认为这个行业的书,分为两种,理论型的和技术型的,所谓理论型,就是长篇大论互联网发展,行业模式等,而技术型,就是类似技术的工具书,是从技能入手的书,这两种书,我家里都有,但我发现买了之后,我很少有时间看,下班没多少时间,北京上班,大多数时间都浪费在地铁上了,上班时间,看看理论型的吧,觉得啰嗦,浪费时间(后来我发现,做这行,除了会技术,你还是需要去看看牛人眼中的互联网的,你需要透过前辈的眼光看世界,不要做IT民工,要做互联网从业者),看看技术型的吧,让别人看见了感觉你太low,所以我大多数时间还是能在网上down到pdf就在电脑看,down不到百度谷歌我要研究的技术,毕竟从事这行,还是用电脑学技术好点,主要是电脑看久了眼睛会疲惫,偶尔看看纸质的书也不错的。而以前面试的时候,面试官经常问,除了大学课本,你还看什么书啊?(如果是你们,恰巧又没看什么书,你们怎么说?),我一般会说,我会自学其他技术,如cocos2dx,然后买一些技术指南之类的书看。我觉得这已经算最大夸张化了,因为大学我真的很少看书,我记忆中就看过一本C++技术类的,一本C#的,一本Android,还有其他几本是什么都不大记得了,大学毕竟十几层的图书馆,除了英语四六级的时候进去复习,其他时间感觉都浪费了这十几层的图书馆。
说说成长过程中遇到的问题吧,如果遇到我解决不了的,以前是先自己百度谷歌,看看有没有办法解决,不行就问老大,而现在,先百度谷歌,看有没有办法解决,没办法在百度谷歌,实在不行还要看框架源码如何实现,上国外论坛看外国友人如何解决,问题总能解决的,总会有办法的。当我开始学习写架构的时候,我会开始关心游戏的网络层使用什么框架,mina还是netty,数据怎么存储mysql还是mongo,是否需要缓存redis存什么,memcached存什么,缓存什么数据,数据传输用什么协议,json还是protobuffer,怎么写效率高,最高支持多少并发等等,我想这些都是我现在需要考虑的问题,当然这些都需要根据游戏具体的需求来决定的,最终服务器能否高效稳定的运行,都是取决于我的架构是否高效稳定,所以这个过程我要不断学习,不断吸取别人的经验。刚到新公司的时候,我才体会到,自己写代码其实也是一种挑战,整个后端我自己一个人实现,代码是否规范,数据如何存储,都是我说了算,我想我的代码不仅要高效,还要让别人看得懂,后来的人能接着我的代码继续写下去。
最后说说Java的题外话,语言之争,从未停过,为什么有人拥护Java,有人拥护PHP,有人喜欢C#,有人喜欢C++,各个语言各有各的优势,业余时间,我也了解了不少其他语言,go,node.js我都有了解,我觉得go的语言层面支持协程并发以及node.js的异步,都是很适合游戏服务器的,我特别看好node.js,异步io真的是对游戏服务器很好的特性,并且加入对原声js支持的mongo模块也是很方便的(上面我有说到,我相信nosql是很适合存储游戏数据的)。说到游戏行业,我认为h5游戏的发展也是越来越快了,上次白鹭的h5开发者生态大会我去了,白鹭的一整套工作流程,以及web vr,真的很令人兴奋(第一轮抽奖我还抽了一个暴风魔镜,哈哈!),另外,大会的模特挺漂亮,哈哈!2015年,互联网行业也略呈下降趋势了,不少创业公司面临倒闭,泡沫经济破灭,因为很多老板抓不住当前经济形势,以为不管是啥,有个app就是创业了,其实全然不知一款app后面有多少运营模式、盈利模式,就像一句讽刺的话,“我有个绝壁好的idea,可以颠覆bat,什么都不缺,就缺个程序员了,等等,千万别告诉马云!”,哈哈,听到这句话,当时我就笑了,估计好多倒闭的创业公司老板都这么想的吧,他们并不能抓住用户真正的需求,只有抓住用户真正的需求,才会抓住用户的心,真正活下来的,才是用户真正需要的,然而,相对来说,游戏行业更是复杂多变,或许今天玩家喜欢这种游戏,明天玩家就喜欢另一种游戏了,就像我们永远也想不到,flappy bird、围住神经病猫这类的游戏竟然能活起来,愚公移山竟然也能让h5游戏变为付费的可能。就像一句话,“只要站在风口上,猪也能飞起来!”,只要抓住了玩家此时此刻真正想要的,产品就一定能做起来。
如果要正经开发网游,并以此为职业的话,不要在意开发软件,直接学语言,就会慢慢
接触到你要用的开发软件,一般称为IDE,C语言的有TUBOR,VC,VS,JAVA语言的一般有
eclipse,myeclipse..
每种开发语言都有对应的编译器,也就是你说的软件,选好语言后,才可以选软件哦
现在说下语言选择:
C语言一般作为程序开发的入门语言,一般必学,但是实际开发中,一般不会用。
因为C语言的逻辑处理方式和现在流行的C++ JAVA C#都很相似,学会C以后可以举一反N
一般程序开发语言有
C\C++\C#系列,开发游戏的话C++一般是做桌面游戏,也就是一般的大型游戏,C#也有XNA平台,可以很容易开发出桌面游戏
C系列的还有Object C,是IOS系统上开发用的主流开发语言。可以做苹果手机上的游戏开发
JAVA这个和C系列的C#很相似,都属于高级语言。现在应该是最流行的语言,后期可以转Android端的APP和手游开发。
Pascal(级别类似C语言)----转Delphi,网游鼻祖《传奇》就是用这个语言开发的,但是现在不是很流行了,国内使用Delphi的公司也不是很多,对应的是桌面游戏软件开发
...
...
还有很多语言可以选择
如果要做网页游戏webGL,javascript,html,css,做客户端的渲染
服务器段使用上面最上面介绍的几种都可以做,
游戏开发,肯定是要存储人物信息的,比如装备啊,等级啊,金钱啊,那还需要学习数据库
现在有很多,SQL系列的oracal,mysql,sqlserver, NoSQL系列的 mongoDB等,
要说技术方面,啥技术都能做,主要是入门到程序开发的世界中
看你提问,应该是什么基础都没有,
如果要学扎实,我给你推荐个路线
C语言,必学,扎实基础用,
之后是JAVA,现在大面积流行,就是找工作也好找
JAVA分支也很多,可以做桌面游戏,可以做网页游戏(服务器端)
可以开发网站,也可以开发Android端的程序,属于非常全能的一门
语言,
之后,看下做手机游戏(Android),
学下SQL语言,对数据库的操作是必须的,初级使用,很容易就掌握
服务器端开发
如果涉及到3D游戏开发,
看下OpenGL,
因为JAVA我也才接触不久,没法给你提供更多的帮助
JAVA有很多分支,具体方向分支不同。上面的回答你做下参考吧。
最后游戏开发一般不会从零开始写代码,找几个游戏引擎看下,开始做游戏
这个方式,如果说你是个正常人,从C语言开始学起,每天保持学习,大概一年之后
可以开发出自己的小型游戏,如果能力比较强大概3-4年后可以有能力开发大型游戏
但是,那时候你会知道,游戏开发也不只需要程序开发,包括故事情节,美工,关卡设置等等
,程序开发只是游戏开发中的一小部分,自己开发,需要你是一个很全能的选手,
加油吧,纯手打
(PS,楼上说的那个啥RPG网游大师,虽然我没用过,但是肯定不咋样,只能做些非常简单的东西,如果想要随心所欲的开发游戏,必须学习程序开发,不要看那些软件,往往会让你在里面耗费很长时间,然后还是不得不走到程序开发这个领域来。)
PHP要写好,不是一般的难,常常要从整体框架上做一些改动,而且得有一个项目级别的大牛牵头写,否则很容易写成学生级别的项目(好像别的语言也多少有点,但是PHP表现太突出了这点)
至于通讯方面,php有swoole这类的长连接server socket能做到一定的缓解,次一点的可以用rest接口,高并发node.js 都不是个事,根据项目而定。
至于什么nosql 负载均衡等等严格说跟语言没多少关系,所以还是看项目的资源来决定。
站在一个多年PHPER的角度,我只能告诉你:PHP做产品 demo易出,精品难寻。
创立于2009年,是全球领先的云计算及人工智能科技公司,致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。
服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,保持着良好的运行纪录 。
在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。
2014年,曾帮助用户抵御全球互联网史上最大的DDoS攻击,峰值流量达到每秒453.8Gb [2] 。在Sort Benchmark 2016 排序竞赛 CloudSort项目中,以1.44$/TB的排序花费打破了AWS保持的4.51$/TB纪录 。在Sort Benchmark 2015,利用自研的分布式计算平台ODPS,377秒完成100TB数据排序,刷新了Apache Spark 1406秒的世界纪录 。
2019年3月3日凌晨,深夜出现故障。官方回复,华北2地域可用区C部分ECS服务器等实例出现IO HANG 持续了三个小时左右,ECS服务器是最为核心的IaaS(基础设施即服务)之一,影响程度应相对较大, 经紧急排查处理后逐步恢复。
其作用大致有以下一部分(作用太多没有完全列出):
弹性计算
云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
专有网络 VPC:帮您轻松构建逻辑隔离的专有网络
负载均衡:对多台云服务器进行流量分发的负载均衡服务
弹性伸缩:自动调整弹性计算资源的管理服务
资源编排:批量创建、管理、配置云计算资源
容器服务:应用全生命周期管理的Docker服务
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
批量计算:简单易用的大规模并行批处理计算服务
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
数据库
云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL
云数据库MongoDB版:三节点副本集保证高可用
云数据库Redis版:兼容开源Redis协议的Key-Value类型
云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应
PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库
云数据库HybridDB:基于Greenplum Database的MPP数据仓库
云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库
数据传输:比GoldenGate更易用,阿里异地多活基础架构
数据管理:比phpMyadmin更强大,比Navicat更易用
存储
对象存储OSS:海量、安全和高可靠的云存储服务
文件存储:无限扩展、多共享、标准文件协议的文件存储服务
归档存储:海量数据的长期归档、备份服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
表格存储:高并发、低延时、无限容量的Nosql数据存储服务
网络
CDN:跨运营商、跨地域全网覆盖的网络加速服务
专有网络 VPC:帮您轻松构建逻辑隔离的专有网络
高速通道:高速稳定的VPC互联和专线接入服务
NAT网关:支持NAT转发、共享带宽的VPC网关
2018年6月20日,宣布联合三大运营商全面对外提供IPv6服务。
大数据
MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案。
Quick BI:高效数据分析与展现平台,通过对数据源的连接,和数据集的创建,对数据进行即席的分析与查询。并通过电子表格或仪表板功能,以拖拽的方式进行数据的可视化呈现。
大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的Open API为数据应用开发者提供良好的再创作生态
DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用, 满足您日常业务监控、调度、会展演示等多场景使用需求
关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等
推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持 A/B Test 效果对比
公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势
企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务
数据集成:稳定高效、弹性伸缩的数据同步平台,为各个云产品提供离线(批量)数据进出通道
分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索
流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具
人工智能
机器学习:基于分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估
语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验
人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块
印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景
云安全
服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全
DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠
Web应用防火墙:网站必备的一款安全防护产品。 通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全
加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案
CA证书服务:云上签发Symantec、CFCA、GeoTrust SSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问
数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险
绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本
安全管家:基于多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全
云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系
态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案
先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费
移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。
互联网中间件
企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、
消息队列MQ:Apache RocketMQ商业版企业级异步通信中间件
分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务
云服务总线CSB:企业级互联网能力开放平台
业务实施监控服务ARMS:端到端一体化实时监控解决方案产品
分析
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
云数据库HybirdDB:基于Greenplum Database的MPP数据仓库
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
大数据计算服务MaxCompute:TB/PB级数据仓库解决方案
分析型数据库:海量数据实时高并发在线分析
开放搜索:结构化数据搜索托管服务
Quick BI:通过对数据源的连接,对数据进行即席分析和可视化呈现。
管理与监控
云监控:指标监控与报警服务
访问控制:管理多因素认证、子账号与授权、角色与STS令牌
资源编排:批量创建、管理、配置云计算资源
操作审计:详细记录控制台和API操作
密钥管理服务:安全、易用、低成本的密钥管理服务
应用服务
日志服务:针对日志收集、存储、查询和分析的服务
开放搜索:结构化数据搜索托管服务
性能测试:性能云测试平台,帮您轻松完成系统性能评估
邮件推送:事务/批量邮件推送,验证码/通知短信服务
API网关:高性能、高可用的API托管服务,低成本开放API
物联网套件:助您快速搭建稳定可靠的物联网应用
消息服务:大规模、高可靠、高并发访问和超强消息堆积能力
视频服务
视频点播:安全、弹性、高可定制的点播服务
媒体转码:为多媒体数据提供的转码计算服务
视频直播:低延迟、高并发的音频视频直播服务
移动服务
移动推送:移动应用通知与消息推送服务
短信服务:验证码和短信通知服务,三网合一快速到达
HTTPDNS:移动应用域名防劫持和精确调整服务
移动安全:为移动应用提供全生命周期安全服务
移动数据分析:移动应用数据采集、分析、展示和数据输出服务
移动加速:移动应用访问加速
云通信
短信服务:验证码和短信通知服务,三网合一快速到达
语音服务:语音通知和语音验证,支持多方通话
流量服务:轻松玩转手机流量,物联卡专供物联终端使用
私密专线:号码隔离,保护双方的隐私信息
移动推送:移动应用通知与消息推送服务
消息服务:大规模、高可靠、高并发访问和超强消息堆积能力
邮件推送:事务邮件、通知邮件和批量邮件的快速发送
行业解决方案
新零售解决方案:快速搭建新零售平台,支持秒杀、视频直播等业务
新金融解决方案:满足互联网金融/证券/银行/保险业务需求
新能源解决方案:帮新运营商、服务商快速搭建标准化商业平台
新制造解决方案:提供快速搭建一站式亿级设备接入、管理能力
新技术解决方案:提供“海量存储、高效分发、极速网络”等服务
大游戏解决方案:为手游/页游/端游开发者提供部署方案
大政务解决方案:满足政府/交通/公安/税务局等业务需求
大健康解决方案:集合传统医疗优势,致力构建智能医疗云生态
大运输解决方案:利用物联网及大数据的技术优势,助力运输企业降本增效
大传媒解决方案:基于高性能基础脚骨,提供面向媒体行业的快速新闻生产、节目制作、专业直播等业务场景
大视频解决方案:一站式提供“海量存储、高效分发、极速网络”等强大服务, 轻松坐享CCTV-5、新浪微博、知乎等量级的传播能力。
房地产解决方案:房地产+互联网大数据,助力房地产行业无限创新
网站解决方案:依据不同发展阶段,提供一站式建站方案
移动APP解决方案:轻松应对移动app爆发式增长
专有云解决方案:帮助客户向混合云架构平滑演进
企业互联网架构方案:经历考验,助企业快速构建分布式应用
央企采购电商解决方案:为企业提供集商流、物流、资金流三位一体的采购解决方案
智能配送调度解决方案:高效高质量输出运输方案,显著降低运输成本
等级保护安全合规方案:建立等保合规生态,提供一站式等保合规方案
安全解决方案:多层防护+云端大数据,提供整套安全产品和服务
云存储解决方案:解决海量数据存档/备份、加工,加速分发等问题
应用交付网络解决方案:帮助传统硬件负载均衡用户快速、平滑迁移到云平台
VR应用开发解决方案:便捷3D模型导入、ET语音交互。
大数据创业:数据哪里来?需要跨过几道坎?
这篇文章考虑了很久也没下笔,一方面想写得干货一些,一方面又想写得引人入胜一些,纠结来纠结去,终于决定还是以一个中立的用户角度去写,尽量写得大众化一些。
2013年5月10日,在淘宝十周年晚会-马云退休演讲中,马云说:这是一个变化的时代。还有人没搞清楚PC,移动互联网来了;还没搞清楚移动互联网,大数据来了。而变化的时代是年轻人的时代。
马云说的这句话很关键,他不仅提到了大数据,而且更是用一句话阐述了互联网从PC时代,进化到移动互联网时代,然后从移动互联网时代进阶到了大数据时代。有几个关键点很重要:PC时代,全球催生了大量的互联网上市企业,包括谷歌、亚马逊、新浪、搜狐、新东方等等;
移动互联网时代,中国创业热潮风生水起,不仅有大量的移动互联网(包括手游)企业赴美上市,更是诞生了无数个创业奇迹。移动互联网不仅为我们的生活带来了便利,更是把创业热潮推向了历史最高峰。
现在问题来了,大数据时代,创业热潮是不是应该比移动互联网时代更加热闹呢?大数据时代如何创业?大数据创业的门槛又有哪些呢?
先回答第一个问题:大数据时代,创业热潮是不是应该比移动互联网时代更加热闹呢?
据我了解,不是。走在中关村创业大街上,你能收到的100份融资BP里,可能有99份都是APP和O2O项目,但99家里90%以上会重视大数据。
那么大数据时代如何创业呢?请先了解一下大数据的创业门槛。
门槛一:数据
大数据大数据,没有数据怎么玩?那么数据从哪里来呢?
像百度、腾讯和阿里巴巴这样的BAT企业,本身就积累了大量的数据,所以他们玩起大数据来,多半是“闷声发大财”。当然了,也可以说几句BAT企业玩大数据的例子,比如说百度旗下的“百度迁徙”、“百度精算”、“百度舆情”、“百度大数据预测引擎”等等,都是百度的大数据产品应用;阿里巴巴的话,“阿里云”、“支付宝-花呗”、“支付宝-借呗”“芝麻信用”、“蚂蚁金服”等等,都应有了大数据技术。而腾讯方面,“腾讯广点通”、“腾讯云分析”和微信等也都引用了大数据技术。
尔等屌丝没有数据,如何玩呢?
首先,你可以通过第三方购买数据,比如说,数据堂就有很多数据出售和分享;
其次,你可以用爬虫爬回一些数据来存储;
再者,通过给企业、开发者、站长等等授权使用大数据工具来积累数据。这方面的新创企业包括Talkingdata、友盟和DataEye等。
最后,使用免费的政府、企业、和机构开放数据。比如说高德数据的API接口和微博商业数据API接口等等。
总体来说,解决好数据源是大数据创业的必要门槛。关键看你创业的项目是什么。
门槛二:硬件
在北京,我曾经参观过一家大数据初创企业,当时他们还没有拿到融资。我去他们的办公区发现一幕特别心酸的事情。他们的员工挤在一间很小的屋子里办公,而两件较大的屋子都用来安放大数据存储服务器。大数据的存储量是很惊人的,这对机房和硬件设备也提出了新的挑战。
这一点和移动互联网不太一样,你做一个APP,用电脑搞开发,服务器用云服务器就行,按需购买。但是大数据不行,你没法把自家的数据存储在别人的云服务器上,一方面是安全因素,另外一方面也有产权因素。
硬件也是大数据创业的门槛之一,但不是最大 的门槛。顺便补充一句,我曾经参观过的那家大数据新创企业,目前已完成百万美元的A轮融资,现在他们家的办公区特别宽敞,恭喜星图数据。
门槛三:人才
我认为大数据创业的最大门槛在于人才。和做APP不一样,大数据创业你一个人乃至几个人都是没法玩转的。初创企业你就往10-15人这样的团队先招人吧,这样的团队要包括Hadoop工程师、算法工程师,数据建模工程师、架构师、NoSQL工程师、BI工程师等等,全都是技术要求较高、薪资要求也很高的人才。
大数据人才有多贵?在美国,在R、NoSQL和MapReduce方面需求的专业人才薪水达到了每年约11万5千美元,在中国也便宜不到哪里去,没有年薪30万,你很难招到一个大数据人才。
也就是说,技术很牛的大数据人才,他的选择面很宽,要么早就进入BAT企业,要么也是在不错的企业拿着高薪,你要挖这样的人才,除了钱,股票、期权、福利等等,都是必须付出的代价。
2015年-2016年是大数据人才最为匮乏的两年,原因很简单,各大刚刚开通了大数据科目的院校,学生还没毕业;而招聘市场上的大数据人才需求量远远已经供不应求。除了BAT企业,通信企业、电力企业、金融银行行业、医疗行业、工业、游戏行业等等,哪个行业不是都在招大数据人才?创业公司要在这么严峻的人才环境中找到适合自己的大数据技术人才,门槛可不止是钱。
门槛四:技术
说了人才,就要说技术了。大数据技术不是你懂C++或者R语言就够了的,大数据有一整套自己的技术体系,包括统计、编程、JAVA、数据库、Hadoop、Spark、NoSQL、机器学习、自然语言处理、算法、数据可视化等等技术。光是Hadoop需要用到的技术和编程语言就有很多项。
而且市面上的大数据工具每家用的还不一样,用开源软件(如Hadoop、Spark)或者用SAP(SAP HANA)需要的技术也不一样。技术要求较高,而拥有大数据综合技术的人才又较少,这也成为了制约大数据创业的最大问题。
门槛五:钱
其实我不想写钱,但是又必须写钱。大数据行业创业不缺资本,只要你创业项目的商业模式没问题,并且技术能力强,且团队靠谱,无论在中国还是在美国,融个A轮还是没有问题的,资本关注度很热。但是你在拿到融资之前,自己启动的资金就需要一大笔。人才、硬件和技术成本都较高。
这么理解吧,如果说,几个好朋友凑50万花3个月可以做一个APP项目,那么要在大数据行业创业的话,请先准备600-800万再来玩。
门槛六:商业模式
中国互联网上最赚钱的行业是什么?我认为是电子商务和网络游戏。电子商务和网络游戏也是互联网变现最快的行业。而大数据,它的变现能力不如网络游戏和电子商务那般简单直接。在我拜访过的很多企业中,他们手里有钱、有数据、有人才也有技术,但是他们不知道自己手里的数据可以拿来做什么。
也就是说,大数据目前没有最明朗最直接的商业模式。大数据只有和业务场景结合,才能产生价值。
大数据就像石油原油一样,你知道它在哪里,你可以开采它,但是开采出来你还需要冶炼,并且经过减压蒸馏、加氢精制、溶剂精制、溶剂脱蜡等炼制过程,成为成品油后运送到各个加油站,让汽车加满油后产生了动力才实现最终价值。大数据也一样,需要一整套复杂 的过程才能实现商业价值。
那么你可能会问了,大数据交易算不算是商业模式呢?我个人觉得,要看交易的是什么东西?原始的非结构化的数据,后面数据清洗需要太多的工序,数据存储也是很大的成本,这样的交易代价太高。我相信无论是企业用户也好,还是个人用户也好,大家更倾向于购买“拿来就能用”的大数据数据源。
你说京东和腾讯完成首笔大数据交易,我觉得就是一个笑话,京东和腾讯的大数据不早就整合在一起了么?我用微信直接就能在京东购物,数据是互通的,何必交易?
所以说,大数据创业最难的还是在于商业模式的思考,如果你没有找到一条让大数据变现的渠道,那么千万不要忙着拉团队创业。大数据行业创业,光有idea是不够的,跑通整个商业模式才是关键。
以上是小编为大家分享的关于大数据创业 数据哪里来?的相关内容,更多信息可以关注环球青藤分享更多干货