快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

r语言go功能富集分析,r语言与go语言

R语言:clusterProfiler进行GO富集分析和Gene_ID转换

ID转换用到的是 bitr() 函数,bitr()的使用方法:

坚守“ 做人真诚 · 做事靠谱 · 口碑至上 · 高效敬业 ”的价值观,专业网站建设服务10余年为成都成都地磅秤小微创业公司专业提供企业网站建设营销网站建设商城网站建设手机网站建设小程序网站建设网站改版,从内容策划、视觉设计、底层架构、网页布局、功能开发迭代于一体的高端网站建设服务。

org.Hs.eg.db包含有多种gene_name的类型

keytypes() :keytypes(x),查看注释包中可以使用的类型

columns() :类似于keytypes(),针对org.Hs.eg.db两个函数返回值一致

select() :select(x, keys, columns, keytype, ...) eg.

函数enrichGO()进行GO富集分析,enrichGO()的使用方法:

举例:

【R语言】解决GO富集分析绘图,标签重叠问题

前面我给大家详细介绍过

☞GO简介及GO富集结果解读

☞四种GO富集柱形图、气泡图解读

☞GO富集分析四种风格展示结果—柱形图,气泡图

☞KEGG富集分析—柱形图,气泡图,通路图

☞ DAVID GO和KEGG富集分析及结果可视化

也用视频给大家介绍过

☞ GO和KEGG富集分析视频讲解

最近有粉丝反映说,利用clusterProfiler这个包绘制GO富集分析气泡图和柱形图的时候,发现GO条目的名字都重叠在一起了。

气泡图

柱形图

这个图别说美观了,简直不忍直视。经过我的认真研究,发现跟R版本有关。前面我给大家展示的基本都是R 3.6.3做出来的图。很多粉丝可能用的都是最新版本的R 4.1.2。

我们知道R的版本在不停的更新,相应的R包也在不停的更新。我把绘制气泡图和柱形图相关的函数拿出来认真的研究了一下,终于发现的症结所在。

dotplot这个函数,多了个 label_format 参数

我们来看看这个参数究竟是干什么用的,看看参数说明

label_format :

a numeric value sets wrap length, alternatively a custom function to format axis labels. by default wraps names longer that 30 characters

原来这个参数默认值是30,当标签的长度大于30个字符就会被折叠,用多行来展示。既然问题找到了,我们就来调节一下这个参数,把他设置成100,让我们的标签可以一行展示。

是不是还是原来的配方,还是熟悉的味道

同样的柱形图,我们也能让他恢复原来的容貌。

关于如何使用R做GO和KEGG富集分析,可参考下文

GO和KEGG富集分析视频讲解

GO富集分析简单介绍

GO富集分析原理简介和DAVID的GO富集分析方法操作演示

寻找差异表达的基因并挖掘它们可能的功能,是我们进行RNA测序的最主要目的。很明显,这些差异的基因必然与功能改变密切相关,例如,比较患病个体与正常个体的组织表达谱,不难想到这些表达显著改变的基因参与了疾病或免疫相关的生物学过程、信号通路等,基因表达水平的失调与疾病肯定密不可分。

我们平时看RNA-seq相关的文献时,文章中在鉴定了差异表达的基因后,大都会在随后承接几句关于这些失调基因所涉及通路的描述。例如,讨论这些差异基因主要映射到哪些GO或KEGG分类条目中,以说明基因表达的改变会导致哪些调控途径原有功能失调,进而与表型联系起来。通常称这种分析为GO、KEGG富集分析。

本节视频教程,就让我们带大家学习什么是GO、KEGG富集分析,它们的主要原理是什么,并简单展示使用DAVID进行差异表达基因GO富集分析的操作过程。

视频教程:

附:bilibili超清视频链接:

GO、KEGG富集分析(一)有参情况

对基因的描述一般从三个层面进行:

这三个层面具体是指:

得到GO注释

做GO分析的思路:

比如,在疾病研究的时候,进行药物治疗之后某些基因的表达量明显的发生了变化,拿这些基因去做GO分析发现在Biological process过程当中集中在RNA修饰上,然后在此基础上继续进行挖掘。这个例子就是想启示大家拿到差异表达基因DEG只是一个开始,接下来就应该去做GO注释,之后需要进行一个分析看这些注释主要集中在哪个地方。假如我们有100个差异表达基因其中有99个都集中在细胞核里,那我们通过GO分析就得到了一个显著的分布。

GO富集分析原理:

有一个term注释了100个差异表达基因参与了哪个过程,注释完之后(模式生物都有现成的注释包,不用我们自己注释),计算相对于背景它是否显著集中在某条通路、某一个细胞学定位、某一种生物学功能。

clusterProfiler是一个功能强大的R包,同时支持GO和KEGG的富集分析,而且可视化功能非常的优秀,本章主要介绍利用这个R包来进行Gene Ontology的富集分析。

进行GO分析时,需要考虑的一个基础因素就是基因的GO注释信息从何处获取。Bioconductor上提供了以下19个物种的Org类型的包,包含了这些物种的GO注释信息

对于以上19个物种,只需要安装对应的org包,clusterProfile就会自动从中获取GO注释信息,我们只需要差异基因的列表就可以了,使用起来非常方便。

1.1 准备输入数据

待分析的数据就是一串基因名称了,可以是ensembl id、entrze id或者symbol id等类型都可以。把基因名称以一列的形式排开,放在一个文本文件中(例如命名“gene.txt”)。Excel中查看,就是如下示例这种样式。

1.3 GO富集分析

加载了注释库之后,读取基因列表文件,并使用clusterProfiler的内部函数enrichGO()即可完成GO富集分析。

读取基因列表文件,并使用clusterProfiler的内部函数enrichKEGG()即可完成KEGG富集分析。

此外,clusterProfiler中也额外提供了一系列的可视化方案用于展示本次富集分析结果,具有极大的便利。

参考:

;utm_medium=timeline


名称栏目:r语言go功能富集分析,r语言与go语言
网页链接:http://6mz.cn/article/phjdch.html

其他资讯