十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章给大家介绍18个Python高效编程技巧分别有哪些,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
目前创新互联公司已为上千的企业提供了网站建设、域名、网页空间、网站托管、服务器租用、企业网站设计、广阳网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
初识Python语言,觉得python满足了我上学时候对编程语言的所有要求。python语言的高效编程技巧让我们这些大学曾经苦逼学了四年c或者c++的人,兴奋的不行不行的,终于解脱了。高级语言,如果做不到这样,还扯啥高级呢?
01 交换变量
>>>a=3 >>>b=6
这个情况如果要交换变量在c++中,肯定需要一个空变量。但是python不需要,只需一行,大家看清楚了
>>>a,b=b,a >>>print(a)>>>6 >>>ptint(b)>>>5
02 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions)
大多数的Python程序员都知道且使用过列表推导(list comprehensions)。如果你对list comprehensions概念不是很熟悉——一个list comprehension就是一个更简短、简洁的创建一个list的方法。
>>> some_list = [1, 2, 3, 4, 5] >>> another_list = [ x + 1 for x in some_list ] >>> another_list [2, 3, 4, 5, 6]
自从python 3.1 起,我们可以用同样的语法来创建集合和字典表:
>>> # Set Comprehensions >>> some_list = [1, 2, 3, 4, 5, 2, 5, 1, 4, 8] >>> even_set = { x for x in some_list if x % 2 == 0 } >>> even_set set([8, 2, 4]) >>> # Dict Comprehensions >>> d = { x: x % 2 == 0 for x in range(1, 11) } >>> d {1: False, 2: True, 3: False, 4: True, 5: False, 6: True, 7: False, 8: True, 9: False, 10: True}
在***个例子里,我们以some_list为基础,创建了一个具有不重复元素的集合,而且集合里只包含偶数。而在字典表的例子里,我们创建了一个key是不重复的1到10之间的整数,value是布尔型,用来指示key是否是偶数。
这里另外一个值得注意的事情是集合的字面量表示法。我们可以简单的用这种方法创建一个集合:
>>> my_set = {1, 2, 1, 2, 3, 4} >>> my_set set([1, 2, 3, 4])
而不需要使用内置函数set()。
03 计数时使用Counter计数对象。
这听起来显而易见,但经常被人忘记。对于大多数程序员来说,数一个东西是一项很常见的任务,而且在大多数情况下并不是很有挑战性的事情——这里有几种方法能更简单的完成这种任务。
Python的collections类库里有个内置的dict类的子类,是专门来干这种事情的:
>>> from collections import Counter >>> c = Counter( hello world ) >>> c Counter({ l : 3, o : 2, : 1, e : 1, d : 1, h : 1, r : 1, w : 1}) >>> c.most_common(2) [( l , 3), ( o , 2)]
04 漂亮的打印出JSON
JSON是一种非常好的数据序列化的形式,被如今的各种API和web service大量的使用。使用python内置的json处理,可以使JSON串具有一定的可读性,但当遇到大型数据时,它表现成一个很长的、连续的一行时,人的肉眼就很难观看了。
为了能让JSON数据表现的更友好,我们可以使用indent参数来输出漂亮的JSON。当在控制台交互式编程或做日志时,这尤其有用:
>>> import json >>> print(json.dumps(data)) # No indention {"status": "OK", "count": 2, "results": [{"age": 27, "name": "Oz", "lactose_intolerant": true}, {"age": 29, "name": "Joe", "lactose_intolerant": false}]} >>> print(json.dumps(data, indent=2)) # With indention { "status": "OK", "count": 2, "results": [ { "age": 27, "name": "Oz", "lactose_intolerant": true }, { "age": 29, "name": "Joe", "lactose_intolerant": false } ] }
同样,使用内置的pprint模块,也可以让其它任何东西打印输出的更漂亮。
05 解决FizzBuzz
前段时间Jeff Atwood 推广了一个简单的编程练习叫FizzBuzz,问题引用如下:
写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz”。
这里就是一个简短的,有意思的方法解决这个问题:
for x in range(1,101): print"fizz"[x%3*len( fizz )::]+"buzz"[x%5*len( buzz )::] or x
06 if 语句在行内
print "Hello" if True else "World" >>> Hello
07 连接
下面的***一种方式在绑定两个不同类型的对象时显得很cool。
nfc = ["Packers", "49ers"] afc = ["Ravens", "Patriots"] print nfc + afc >>> [ Packers , 49ers , Ravens , Patriots ] print str(1) + " world" >>> 1 world print `1` + " world" >>> 1 world print 1, "world" >>> 1 world print nfc, 1 >>> [ Packers , 49ers ] 1
08 数值比较
这是我见过诸多语言中很少有的如此棒的简便法
x = 2 if 3 > x > 1: print x >>> 2 if 1 < x > 0: print x >>> 2
09 同时迭代两个列表
nfc = ["Packers", "49ers"] afc = ["Ravens", "Patriots"] for teama, teamb in zip(nfc, afc): print teama + " vs. " + teamb >>> Packers vs. Ravens >>> 49ers vs. Patriots
10 带索引的列表迭代
teams = ["Packers", "49ers", "Ravens", "Patriots"] for index, team in enumerate(teams): print index, team >>> 0 Packers >>> 1 49ers >>> 2 Ravens >>> 3 Patriots
11 列表推导式
已知一个列表,我们可以刷选出偶数列表方法:
numbers = [1,2,3,4,5,6] even = [] for number in numbers: if number%2 == 0: even.append(number)
转变成如下:
numbers = [1,2,3,4,5,6] even = [number for number in numbers if number%2 == 0]
12 字典推导
和列表推导类似,字典可以做同样的工作:
teams = ["Packers", "49ers", "Ravens", "Patriots"] print {key: value for value, key in enumerate(teams)} >>> { 49ers : 1, Ravens : 2, Patriots : 3, Packers : 0}
13 初始化列表的值
items = [0]*3print items >>> [0,0,0]
14 列表转换为字符串
teams = ["Packers", "49ers", "Ravens", "Patriots"] print ", ".join(teams) >>> Packers, 49ers, Ravens, Patriots
15 从字典中获取元素
我承认try/except代码并不雅致,不过这里有一种简单方法,尝试在字典中找key,如果没有找到对应的alue将用第二个参数设为其变量值。
data = { user : 1, name : Max , three : 4} try: is_admin = data[ admin ] except KeyError: is_admin = False
替换成这样
data = { user : 1, name : Max , three : 4} is_admin = data.get( admin , False)
16 获取列表的子集
有时,你只需要列表中的部分元素,这里是一些获取列表子集的方法。
x = [1,2,3,4,5,6] #前3个 print x[:3] >>> [1,2,3] #中间4个 print x[1:5] >>> [2,3,4,5] #***3个 print x[3:] >>> [4,5,6] #奇数项 print x[::2] >>> [1,3,5] #偶数项 print x[1::2] >>> [2,4,6]
除了python内置的数据类型外,在collection模块同样还包括一些特别的用例,在有些场合Counter非常实用。如果你参加过在这一年的Facebook HackerCup,你甚至也能找到他的实用之处。
from collections import Counter print Counter("hello") >>> Counter({ l : 2, h : 1, e : 1, o : 1})
17 迭代工具
和collections库一样,还有一个库叫itertools,对某些问题真能高效地解决。其中一个用例是查找所有组合,他能告诉你在一个组中元素的所有不能的组合方式
from itertools import combinations teams = ["Packers", "49ers", "Ravens", "Patriots"] for game in combinations(teams, 2): print game >>> ( Packers , 49ers ) >>> ( Packers , Ravens ) >>> ( Packers , Patriots ) >>> ( 49ers , Ravens ) >>> ( 49ers , Patriots ) >>> ( Ravens , Patriots )
18 False == True
比起实用技术来说这是一个很有趣的事,在python中,True和False是全局变量,因此:
False = True if False: print "Hello" else: print "World" >>> Hello
关于18个Python高效编程技巧分别有哪些就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。