快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

OpenCVpythonsklearn如何实现随机超参数搜索-创新互联

小编给大家分享一下OpenCV python sklearn如何实现随机超参数搜索,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!

成都创新互联公司专注于沙湾企业网站建设,响应式网站设计,购物商城网站建设。沙湾网站建设公司,为沙湾等地区提供建站服务。全流程定制网站建设,专业设计,全程项目跟踪,成都创新互联公司专业和态度为您提供的服务

本文介绍了OpenCV python sklearn随机超参数搜索的实现,分享给大家,具体如下:

"""
房价预测数据集 使用sklearn执行超参数搜索
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import tensorflow as tf
from tensorflow_core.python.keras.api._v2 import keras # 不能使用 python
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from scipy.stats import reciprocal

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

# 0.打印导入模块的版本
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, sklearn, pd, tf, keras:
  print("%s version:%s" % (module.__name__, module.__version__))


# 显示学习曲线
def plot_learning_curves(his):
  pd.DataFrame(his.history).plot(figsize=(8, 5))
  plt.grid(True)
  plt.gca().set_ylim(0, 1)
  plt.show()


# 1.加载数据集 california 房价
housing = fetch_california_housing()

print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)

# 2.拆分数据集 训练集 验证集 测试集
x_train_all, x_test, y_train_all, y_test = train_test_split(
  housing.data, housing.target, random_state=7)
x_train, x_valid, y_train, y_valid = train_test_split(
  x_train_all, y_train_all, random_state=11)

print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)

# 3.数据集归一化
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.fit_transform(x_valid)
x_test_scaled = scaler.fit_transform(x_test)


# 创建keras模型
def build_model(hidden_layers=1, # 中间层的参数
        layer_size=30,
        learning_rate=3e-3):
  # 创建网络层
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(layer_size, activation="relu",
                 input_shape=x_train.shape[1:]))
 # 隐藏层设置
  for _ in range(hidden_layers - 1):
    model.add(keras.layers.Dense(layer_size,
                   activation="relu"))
  model.add(keras.layers.Dense(1))

  # 优化器学习率
  optimizer = keras.optimizers.SGD(lr=learning_rate)
  model.compile(loss="mse", optimizer=optimizer)

  return model


def main():
  # RandomizedSearchCV

  # 1.转化为sklearn的model
  sk_learn_model = keras.wrappers.scikit_learn.KerasRegressor(build_model)

  callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)]

  history = sk_learn_model.fit(x_train_scaled, y_train, epochs=100,
                 validation_data=(x_valid_scaled, y_valid),
                 callbacks=callbacks)
  # 2.定义超参数集合
  # f(x) = 1/(x*log(b/a)) a <= x <= b
  param_distribution = {
    "hidden_layers": [1, 2, 3, 4],
    "layer_size": np.arange(1, 100),
    "learning_rate": reciprocal(1e-4, 1e-2),
  }

  # 3.执行超搜索参数
  # cross_validation:训练集分成n份, n-1训练, 最后一份验证.
  random_search_cv = RandomizedSearchCV(sk_learn_model, param_distribution,
                     n_iter=10,
                     cv=3,
                     n_jobs=1)
  random_search_cv.fit(x_train_scaled, y_train, epochs=100,
             validation_data=(x_valid_scaled, y_valid),
             callbacks=callbacks)
  # 4.显示超参数
  print(random_search_cv.best_params_)
  print(random_search_cv.best_score_)
  print(random_search_cv.best_estimator_)

  model = random_search_cv.best_estimator_.model
  print(model.evaluate(x_test_scaled, y_test))

  # 5.打印模型训练过程
  plot_learning_curves(history)


if __name__ == '__main__':
  main()

看完了这篇文章,相信你对“OpenCV python sklearn如何实现随机超参数搜索”有了一定的了解,如果想了解更多相关知识,欢迎关注创新互联成都网站设计公司行业资讯频道,感谢各位的阅读!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


新闻名称:OpenCVpythonsklearn如何实现随机超参数搜索-创新互联
转载注明:http://6mz.cn/article/jsihi.html

其他资讯