快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

PostgreSQL源码解读(58)-查询语句#43(make_one_rel函数#8-B...

这一小节继续介绍查询物理优化中的create_index_paths->create_bitmap_heap_path函数,该函数创建位图堆扫描访问路径节点。
关于BitmapHeapScan的相关知识,请参照PostgreSQL DBA(6) - SeqScan vs IndexScan vs BitmapHeapScan这篇文章.
本节没有描述具体的Cost成本计算方法(公式),后续再行详述。

成都创新互联公司成立于2013年,是专业互联网技术服务公司,拥有项目网站制作、成都网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元平山做网站,已为上家服务,为平山各地企业和个人服务,联系电话:028-86922220

一、数据结构

Cost相关
注意:实际使用的参数值通过系统配置文件定义,而不是这里的常量定义!

 typedef double Cost; /* execution cost (in page-access units) */

 /* defaults for costsize.c's Cost parameters */
 /* NB: cost-estimation code should use the variables, not these constants! */
 /* 注意:实际值通过系统配置文件定义,而不是这里的常量定义! */
 /* If you change these, update backend/utils/misc/postgresql.sample.conf */
 #define DEFAULT_SEQ_PAGE_COST  1.0       //顺序扫描page的成本
 #define DEFAULT_RANDOM_PAGE_COST  4.0      //随机扫描page的成本
 #define DEFAULT_CPU_TUPLE_COST  0.01     //处理一个元组的CPU成本
 #define DEFAULT_CPU_INDEX_TUPLE_COST 0.005   //处理一个索引元组的CPU成本
 #define DEFAULT_CPU_OPERATOR_COST  0.0025    //执行一次操作或函数的CPU成本
 #define DEFAULT_PARALLEL_TUPLE_COST 0.1    //并行执行,从一个worker传输一个元组到另一个worker的成本
 #define DEFAULT_PARALLEL_SETUP_COST  1000.0  //构建并行执行环境的成本
 
 #define DEFAULT_EFFECTIVE_CACHE_SIZE  524288    /*先前已有介绍, measured in pages */

 double      seq_page_cost = DEFAULT_SEQ_PAGE_COST;
 double      random_page_cost = DEFAULT_RANDOM_PAGE_COST;
 double      cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST;
 double      cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST;
 double      cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST;
 double      parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST;
 double      parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;
 
 int         effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;
 Cost        disable_cost = 1.0e10;//1后面10个0,通过设置一个巨大的成本,让优化器自动放弃此路径
 
 int         max_parallel_workers_per_gather = 2;//每次gather使用的worker数

二、源码解读

create_bitmap_heap_path函数
create_index_paths->create_bitmap_heap_path函数,创建位图堆扫描访问路径节点.

 /*
  * create_bitmap_heap_path
  *    Creates a path node for a bitmap scan.
  *    创建位图堆扫描访问路径节点
  *
  * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
  * bitmapqual-IndexPath, BitmapAndPath, and BitmapOrPath节点组成的树
  * 'required_outer' is the set of outer relids for a parameterized path.
  * required_outer-参数化路径中依赖的外部relids
  * 'loop_count' is the number of repetitions of the indexscan to factor into
  *      estimates of caching behavior.
  * loop_count-上一节已介绍
  *
  * loop_count should match the value used when creating the component
  * IndexPaths.
  */
 BitmapHeapPath *
 create_bitmap_heap_path(PlannerInfo *root,
                         RelOptInfo *rel,
                         Path *bitmapqual,
                         Relids required_outer,
                         double loop_count,
                         int parallel_degree)
 {
     BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);//创建节点
 
     pathnode->path.pathtype = T_BitmapHeapScan;
     pathnode->path.parent = rel;
     pathnode->path.pathtarget = rel->reltarget;
     pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
                                                           required_outer);
     pathnode->path.parallel_aware = parallel_degree > 0 ? true : false;
     pathnode->path.parallel_safe = rel->consider_parallel;
     pathnode->path.parallel_workers = parallel_degree;
     pathnode->path.pathkeys = NIL;  /* always unordered */
 
     pathnode->bitmapqual = bitmapqual;
 
     cost_bitmap_heap_scan(&pathnode->path, root, rel,
                           pathnode->path.param_info,
                           bitmapqual, loop_count);//成本估算
 
     return pathnode;//返回结果
 }
 
//-------------------------------------------------------- cost_bitmap_heap_scan
 /*
  * cost_bitmap_heap_scan
  *    Determines and returns the cost of scanning a relation using a bitmap
  *    index-then-heap plan.
  *    确定并返回使用BitmapIndexScan和BitmapHeapScan的成本.
  *
  * 'baserel' is the relation to be scanned
  * baserel-需扫描的Relation
  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
  * param_info-参数化信息
  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
  * bitmapqual-位图条件表达式,IndexPath, BitmapAndPath, and BitmapOrPath节点组成的树
  * 'loop_count' is the number of repetitions of the indexscan to factor into
  *      estimates of caching behavior
  *
  * Note: the component IndexPaths in bitmapqual should have been costed
  * using the same loop_count.
  */
 void
 cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel,
                       ParamPathInfo *param_info,
                       Path *bitmapqual, double loop_count)
 {
     Cost        startup_cost = 0;//启动成本
     Cost        run_cost = 0;//执行成本
     Cost        indexTotalCost;//索引扫描总成本
     QualCost    qpqual_cost;//表达式成本
     Cost        cpu_per_tuple;
     Cost        cost_per_page;
     Cost        cpu_run_cost;
     double      tuples_fetched;
     double      pages_fetched;
     double      spc_seq_page_cost,
                 spc_random_page_cost;
     double      T;
 
     /* Should only be applied to base relations */
     Assert(IsA(baserel, RelOptInfo));
     Assert(baserel->relid > 0);
     Assert(baserel->rtekind == RTE_RELATION);
 
     /* Mark the path with the correct row estimate */
     if (param_info)
         path->rows = param_info->ppi_rows;
     else
         path->rows = baserel->rows;
 
     if (!enable_bitmapscan)//不允许位图扫描
         startup_cost += disable_cost;//禁用之
 
     pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
                                          loop_count, &indexTotalCost,
                                          &tuples_fetched);//计算页面数
 
     startup_cost += indexTotalCost;//启动成本为BitmapIndexScan的总成本
     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;//页面数
 
     /* Fetch estimated page costs for tablespace containing table. */
     get_tablespace_page_costs(baserel->reltablespace,
                               &spc_random_page_cost,
                               &spc_seq_page_cost);//访问表空间页面成本
 
     /*
      * For small numbers of pages we should charge spc_random_page_cost
      * apiece, while if nearly all the table's pages are being read, it's more
      * appropriate to charge spc_seq_page_cost apiece.  The effect is
      * nonlinear, too. For lack of a better idea, interpolate like this to
      * determine the cost per page.
      * 对于少量的页面,每个页面的成本为spc_random_page_cost,
      * 而如果几乎所有的页面都被读取,则每个页面的成本为spc_seq_page_cost。
      * 这种影响也是非线性的。由于缺乏更好的方法,通过插值法确定每页的成本。
      */
     if (pages_fetched >= 2.0)
         cost_per_page = spc_random_page_cost -
             (spc_random_page_cost - spc_seq_page_cost)
             * sqrt(pages_fetched / T);
     else
         cost_per_page = spc_random_page_cost;
 
     run_cost += pages_fetched * cost_per_page;//执行成本
 
     /*
      * Estimate CPU costs per tuple.
      * 为每个元组估算CPU成本(Rechck步骤的成本)
      * 
      * Often the indexquals don't need to be rechecked at each tuple ... but
      * not always, especially not if there are enough tuples involved that the
      * bitmaps become lossy.  For the moment, just assume they will be
      * rechecked always.  This means we charge the full freight for all the
      * scan clauses. 
      * 通常情况下,索引约束条件不需要在每个元组上重新检查,但现实并非如此理想,
      * 尤其是当涉及到较多的元组时。就目前而言,
      * 优化器会假设它们总是会被重新检查。这意味着我们需要为所有扫描条件计算成本。
      */
     get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);//获取条件表达式
 
     startup_cost += qpqual_cost.startup;//增加启动成本
     cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;//增加处理每个元组的CPU成本
     cpu_run_cost = cpu_per_tuple * tuples_fetched;//CPU运行成本
 
     /* Adjust costing for parallelism, if used. */
     if (path->parallel_workers > 0)//是否并行?
     {
         double      parallel_divisor = get_parallel_divisor(path);
 
         /* The CPU cost is divided among all the workers. */
         cpu_run_cost /= parallel_divisor;
 
         path->rows = clamp_row_est(path->rows / parallel_divisor);
     }
 
     //计算最终成本
     run_cost += cpu_run_cost;
 
     /* tlist eval costs are paid per output row, not per tuple scanned */
     startup_cost += path->pathtarget->cost.startup;
     run_cost += path->pathtarget->cost.per_tuple * path->rows;
 
     path->startup_cost = startup_cost;
     path->total_cost = startup_cost + run_cost;
 }

//--------------------------------------- compute_bitmap_pages

 /*
  * compute_bitmap_pages
  * 
  * compute number of pages fetched from heap in bitmap heap scan.
  * 计算页面数
  */
 double
 compute_bitmap_pages(PlannerInfo *root, RelOptInfo *baserel, Path *bitmapqual,
                      int loop_count, Cost *cost, double *tuple)
 {
     Cost        indexTotalCost;
     Selectivity indexSelectivity;
     double      T;
     double      pages_fetched;
     double      tuples_fetched;
     double      heap_pages;
     long        maxentries;
 
     /*
      * Fetch total cost of obtaining the bitmap, as well as its total
      * selectivity.
      * 获取位图的总成本,以及它的总选择性。
      */
     cost_bitmap_tree_node(bitmapqual, &indexTotalCost, &indexSelectivity);
 
     /*
      * Estimate number of main-table pages fetched.
      * 估算主表的页面数
      */
     tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);//计算总元组数
 
     T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
 
     /*
      * For a single scan, the number of heap pages that need to be fetched is
      * the same as the Mackert and Lohman formula for the case T <= b (ie, no
      * re-reads needed).
      * 对于单个扫描,需要获取的堆页面数量与T <= b(即不需要重新读取)的Mackert和Lohman公式相同。
      */
     pages_fetched = (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
 
     /*
      * Calculate the number of pages fetched from the heap.  Then based on
      * current work_mem estimate get the estimated maxentries in the bitmap.
      * (Note that we always do this calculation based on the number of pages
      * that would be fetched in a single iteration, even if loop_count > 1.
      * That's correct, because only that number of entries will be stored in
      * the bitmap at one time.)
      * 计算从堆中读取的页面数.
      * 根据当前的work_mem估算得到位图中粗略的最大访问入口(entries)。
      * (请注意,我们总是根据单个迭代中获取的页面数来进行计算,
      * 即使loop_count > 1也是如此。因为只有该数量的条目在位图中只存储一次。
      */
     heap_pages = Min(pages_fetched, baserel->pages);//堆页面数
     maxentries = tbm_calculate_entries(work_mem * 1024L);//位图最大入口数
 
     if (loop_count > 1)
     {
         /*
          * For repeated bitmap scans, scale up the number of tuples fetched in
          * the Mackert and Lohman formula by the number of scans, so that we
          * estimate the number of pages fetched by all the scans. Then
          * pro-rate for one scan.
          */
         pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
                                             baserel->pages,
                                             get_indexpath_pages(bitmapqual),
                                             root);
         pages_fetched /= loop_count;
     }
 
     if (pages_fetched >= T)
         pages_fetched = T;//数据字典中的页面数
     else
         pages_fetched = ceil(pages_fetched);
 
     if (maxentries < heap_pages)//最大入口数小于堆页面数
     {
         double      exact_pages;
         double      lossy_pages;
 
         /*
          * Crude approximation of the number of lossy pages.  Because of the
          * way tbm_lossify() is coded, the number of lossy pages increases
          * very sharply as soon as we run short of memory; this formula has
          * that property and seems to perform adequately in testing, but it's
          * possible we could do better somehow.
          * 粗略估计缺页的数目。由于tbm_lossify()的编码方式,
          * 一旦内存不足,缺页的数量就会急剧增加;
          * 这个公式有这个性质,在测试中表现得很好,但有可能做得更好。
          */
         lossy_pages = Max(0, heap_pages - maxentries / 2);
         exact_pages = heap_pages - lossy_pages;
 
         /*
          * If there are lossy pages then recompute the  number of tuples
          * processed by the bitmap heap node.  We assume here that the chance
          * of a given tuple coming from an exact page is the same as the
          * chance that a given page is exact.  This might not be true, but
          * it's not clear how we can do any better.
          * 如果存在缺页面,则重新计算位图堆节点处理的元组数量。
          * 这里假设给定元组来自精确页面的概率与给定页面的概率相同。
          * 但这可能不符合实际情况,但我们不清楚如何才能做得更好:(
          */
         if (lossy_pages > 0)
             tuples_fetched =
                 clamp_row_est(indexSelectivity *
                               (exact_pages / heap_pages) * baserel->tuples +
                               (lossy_pages / heap_pages) * baserel->tuples);
     }
 
     if (cost)
         *cost = indexTotalCost;
     if (tuple)
         *tuple = tuples_fetched;
 
     return pages_fetched;
 }

//--------------------------- tbm_calculate_entries

 /*
  * tbm_calculate_entries
  *
  * Estimate number of hashtable entries we can have within maxbytes.
  */
 long
 tbm_calculate_entries(double maxbytes)
 {
     long        nbuckets;
 
     /*
      * Estimate number of hashtable entries we can have within maxbytes. This
      * estimates the hash cost as sizeof(PagetableEntry), which is good enough
      * for our purpose.  Also count an extra Pointer per entry for the arrays
      * created during iteration readout.
      * 估计maxbytes中可以包含的哈希表条目的数量。
      * 这将散列成本估计为sizeof(PagetableEntry),这已经足够好了。
      * 还要为迭代读出期间创建的数组中每个条目计算额外的指针。
      */
     nbuckets = maxbytes /
         (sizeof(PagetableEntry) + sizeof(Pointer) + sizeof(Pointer));//桶数
     nbuckets = Min(nbuckets, INT_MAX - 1);  /* safety limit */
     nbuckets = Max(nbuckets, 16);   /* sanity limit */
 
     return nbuckets;
 }

//--------------------------- cost_bitmap_tree_node

 /*
  * cost_bitmap_tree_node
  *      Extract cost and selectivity from a bitmap tree node (index/and/or)
  */
 void
 cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)
 {
     if (IsA(path, IndexPath))//索引访问路径
     {
         *cost = ((IndexPath *) path)->indextotalcost;
         *selec = ((IndexPath *) path)->indexselectivity;
 
         /*
          * Charge a small amount per retrieved tuple to reflect the costs of
          * manipulating the bitmap.  This is mostly to make sure that a bitmap
          * scan doesn't look to be the same cost as an indexscan to retrieve a
          * single tuple.
          * 对每个检索到的元组计算少量成本,以反映操作位图的成本。
          * 这主要是为了确保位图扫描与索引扫描检索单个元组的成本不一样。
          */
         *cost += 0.1 * cpu_operator_cost * path->rows;
     }
     else if (IsA(path, BitmapAndPath))//BitmapAndPath
     {
         *cost = path->total_cost;
         *selec = ((BitmapAndPath *) path)->bitmapselectivity;
     }
     else if (IsA(path, BitmapOrPath))//BitmapOrPath
     {
         *cost = path->total_cost;
         *selec = ((BitmapOrPath *) path)->bitmapselectivity;
     }
     else
     {
         elog(ERROR, "unrecognized node type: %d", nodeTag(path));
         *cost = *selec = 0;     /* keep compiler quiet */
     }
 }

三、跟踪分析

测试脚本如下

select t1.* 
from t_dwxx t1 
where dwbh > '10000' and dwbh < '30000';

启动gdb跟踪

(gdb) b create_bitmap_heap_path
Breakpoint 1 at 0x78f1c1: file pathnode.c, line 1090.
(gdb) c
Continuing.

Breakpoint 1, create_bitmap_heap_path (root=0x23d93d8, rel=0x248a788, bitmapqual=0x2473a08, required_outer=0x0, 
    loop_count=1, parallel_degree=0) at pathnode.c:1090
1090        BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);

创建节点,并赋值

1090        BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);
(gdb) n
1092        pathnode->path.pathtype = T_BitmapHeapScan;
(gdb) n
1093        pathnode->path.parent = rel;
(gdb) n
1094        pathnode->path.pathtarget = rel->reltarget;
(gdb) n
1095        pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
(gdb) 
1097        pathnode->path.parallel_aware = parallel_degree > 0 ? true : false;
(gdb) 
1098        pathnode->path.parallel_safe = rel->consider_parallel;
(gdb) 
1099        pathnode->path.parallel_workers = parallel_degree;
(gdb) 
1100        pathnode->path.pathkeys = NIL;  /* always unordered */
(gdb) 
1102        pathnode->bitmapqual = bitmapqual;

进入cost_bitmap_heap_scan函数

(gdb) 
1104        cost_bitmap_heap_scan(&pathnode->path, root, rel,
(gdb) step
cost_bitmap_heap_scan (path=0x24737d8, root=0x23d93d8, baserel=0x248a788, param_info=0x0, bitmapqual=0x2473a08, 
    loop_count=1) at costsize.c:949
949     Cost        startup_cost = 0;

输入参数,其中bitmapqual为T_IndexPath节点
路径的其他关键信息:rows = 2223, startup_cost = 0.28500000000000003, total_cost = 169.23871600907944

(gdb) p *(IndexPath *)bitmapqual
$2 = {path = {type = T_IndexPath, pathtype = T_IndexScan, parent = 0x248a788, pathtarget = 0x248a998, param_info = 0x0, 
    parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 2223, startup_cost = 0.28500000000000003, 
    total_cost = 169.23871600907944, pathkeys = 0x0}, indexinfo = 0x23b63b8, indexclauses = 0x2473948, 
  indexquals = 0x2473b38, indexqualcols = 0x2473b88, indexorderbys = 0x0, indexorderbycols = 0x0, 
  indexscandir = ForwardScanDirection, indextotalcost = 50.515000000000001, indexselectivity = 0.22227191011235958}

开始计算成本

...
980     startup_cost += indexTotalCost;
(gdb) p indexTotalCost
$16 = 51.070750000000004
(gdb) p startup_cost
$17 = 0
(gdb) p pages_fetched
$18 = 64
(gdb) p baserel->pages
$19 = 64
...
(gdb) p qpqual_cost
$20 = {startup = 0, per_tuple = 0.0050000000000000001}

最终的访问路径信息

(gdb) p *(BitmapHeapPath *)path
$22 = {path = {type = T_BitmapHeapPath, pathtype = T_BitmapHeapScan, parent = 0x248a788, pathtarget = 0x248a998, 
    param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 2223, 
    startup_cost = 51.070750000000004, total_cost = 148.41575, pathkeys = 0x0}, bitmapqual = 0x2473a08}

除了BitmapHeapPath,还有BitmapOr和BitmapAnd,这两种Path的解析后续再详述.

四、参考资料

allpaths.c
cost.h
costsize.c
PG Document:Query Planning


网站题目:PostgreSQL源码解读(58)-查询语句#43(make_one_rel函数#8-B...
文章分享:http://6mz.cn/article/jsghpe.html

其他资讯