快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Python中怎么分析网站日志数据

Python中怎么分析网站日志数据,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

在武夷山等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都做网站、网站制作 网站设计制作定制开发,公司网站建设,企业网站建设,品牌网站建设,全网营销推广,成都外贸网站制作,武夷山网站建设费用合理。

数据来源

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import apache_log_parser        # 首先通过 pip install apache_log_parser 安装库
%matplotlib inline
fformat = '%V %h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\" %T'  # 创建解析器
p = apache_log_parser.make_parser(fformat)
sample_string = 'koldunov.net 85.26.235.202 - - [16/Mar/2013:00:19:43 +0400] "GET /?p=364 HTTP/1.0" 200 65237 "http://koldunov.net/?p=364" "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11" 0'
data = p(sample_string) #解析后的数据为字典结构
data

Python中怎么分析网站日志数据

datas = open(r'H:\python数据分析\数据\apache_access_log').readlines()  #逐行读取log数据
log_list = []  # 逐行读取并解析为字典
for line in datas:
data = p(line)
data['time_received'] = data['time_received'][1:12]+' '+data['time_received'][13:21]+' '+data['time_received'][22:27] #时间数据整理
log_list.append(data)    #传入列表
log = pd.DataFrame(log_list)   #构造DataFrame
log = log[['status','response_bytes_clf','remote_host','request_first_line','time_received']]   #提取感兴趣的字段
log.head()
#status 状态码 response_bytes_clf 返回的字节数(流量)remote_host 远端主机IP地址 request_first_line 请求内容t ime_received 时间数据

Python中怎么分析网站日志数据

log['time_received'] = pd.to_datetime(log['time_received']) #把time_received字段转换为时间数据类型,并设置为索引
log = log.set_index('time_received')
log.head()

Python中怎么分析网站日志数据

log['status'] = log['status'].astype('int') # 转换为int类型
log['response_bytes_clf'].unique()
array(['26126', '10532', '1853', ..., '66386', '47413', '48212'], dtype=object)
log[log['response_bytes_clf'] == '-'].head() #对response_bytes_clf字段进行转换时报错,查找原因发现其中含有“-”

def dash3nan(x):    # 定义转换函数,当为“-”字符时,将其替换为空格,并将字节数据转化为M数据
   if x == '-':
x = np.nan
   else:
x = float(x)/1048576
   return x
log['response_bytes_clf'] = log['response_bytes_clf'].map(dash3nan)
log.head()

Python中怎么分析网站日志数据

log.dtypes

Python中怎么分析网站日志数据

流量起伏不大,但有一个极大的峰值超过了20MB。

log[log['response_bytes_clf']>20] #查看流量峰值

t_log = log['response_bytes_clf'].resample('30t').count()
t_log.plot()

对时间重采样(30min),并计数 ,可看出每个时间段访问的次数,早上8点访问次数最多,其余时间处于上下波动中。

Python中怎么分析网站日志数据

h_log = log['response_bytes_clf'].resample('H').count()
h_log.plot()

当继续转换频率到低频率时,上下波动不明显。

d_log = pd.DataFrame({'count':log['response_bytes_clf'].resample('10t').count(),'sum':log['response_bytes_clf'].resample('10t').sum()})    
d_log.head()

Python中怎么分析网站日志数据

构造访问次数和访问流量的 DataFrame。

plt.figure(figsize=(10,6))   #设置图表大小
ax1 = plt.subplot(111)    #一个subplot
ax2 = ax1.twinx()     #公用x轴
ax1.plot(d_log['count'],color='r',label='count')
ax1.legend(loc=2)
ax2.plot(d_log['sum'],label='sum')
ax2.legend(loc=0)

绘制折线图,有图可看出,访问次数与访问流量存在相关性。

IP地址分析

ip_count = log['remote_host'].value_counts()[0:10] #对remote_host计数,并取前10位
ip_count

Python中怎么分析网站日志数据

ip_count.plot(kind='barh') #IP前十位柱状图

import pygeoip # pip install pygeoip 安装库
# 同时需要在网站上(http://dev.maxmind.com/geoip/legacy/geolite)下载DAT文件才能解析IP地址
gi = pygeoip.GeoIP(r'H:\python数据分析\数据\GeoLiteCity.dat', pygeoip.MEMORY_CACHE)
info = gi.record_by_addr('64.233.161.99')
info #解析IP地址

Python中怎么分析网站日志数据

ips = log.groupby('remote_host')['status'].agg(['count']) # 对IP地址分组统计
ips.head()

ips.drop('91.224.246.183',inplace=True)

ips['country'] = [gi.record_by_addr(i)['country_code3'] for i in ips.index] # 将IP解析的国家和经纬度写入DataFrame
ips['latitude'] = [gi.record_by_addr(i)['latitude'] for i in ips.index]
ips['longitude'] = [gi.record_by_addr(i)['longitude'] for i in ips.index]

ips.head()
country = ips.groupby('country')['count'].sum() #对country字段分组统计
country = country.sort_values(ascending=False)[0:10] # 筛选出前10位的国家
country

Python中怎么分析网站日志数据

country.plot(kind='bar')

俄罗斯的访问量最多,可推断该网站来源于俄罗斯。

from mpl_toolkits.basemap import Basemap

plt.style.use('ggplot')
plt.figure(figsize=(10,6))

map1 = Basemap(projection='robin', lat_0=39.9, lon_0=116.3,
resolution = 'l', area_thresh = 1000.0)

map1.drawcoastlines()
map1.drawcountries()
map1.drawmapboundary()

map1.drawmeridians(np.arange(0, 360, 30))
map1.drawparallels(np.arange(-90, 90, 30))

size = 0.03
for lon, lat, mag in zip(list(ips['longitude']), list(ips['latitude']), list(ips['count'])):
x,y = map1(lon, lat)
msize = mag * size
map1.plot(x, y, 'ro', markersize=msize)

Python中怎么分析网站日志数据

关于Python中怎么分析网站日志数据问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


名称栏目:Python中怎么分析网站日志数据
标题网址:http://6mz.cn/article/johcsp.html

其他资讯