快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

sparkstreaming窗口聚合操作后怎么管理offset

这篇文章主要介绍“spark streaming窗口聚合操作后怎么管理offset”,在日常操作中,相信很多人在spark streaming窗口聚合操作后怎么管理offset问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”spark streaming窗口聚合操作后怎么管理offset”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

闻喜网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。创新互联从2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。

对于spark streaming来说窗口操作之后,是无法管理offset的,因为offset的存储于HasOffsetRanges。只有kafkaRDD继承了他,所以假如我们对KafkaRDD进行了转化之后就无法再获取offset了。

还有窗口之后的offset的管理,也是很麻烦的,主要原因就是窗口操作会包含若干批次的RDD数据,那么提交offset我们只需要提交最近的那个批次的kafkaRDD的offset即可。如何获取呢?

对于spark 来说代码执行位置分为driver和executor,我们希望再driver端获取到offset,在处理完结果提交offset,或者直接与结果一起管理offset。

说到driver端执行,其实我们只需要使用transform获取到offset信息,然后在输出操作foreachrdd里面使用提交即可。

package bigdata.spark.SparkStreaming.kafka010
import java.util.Properties
import org.apache.kafka.clients.consumer.{Consumer, ConsumerRecord, KafkaConsumer}import org.apache.kafka.common.TopicPartitionimport org.apache.kafka.common.serialization.StringDeserializerimport org.apache.spark.rdd.RDDimport org.apache.spark.streaming.kafka010._import org.apache.spark.streaming.{Seconds, StreamingContext}import org.apache.spark.{SparkConf, TaskContext}
import scala.collection.JavaConverters._import scala.collection.mutable
object kafka010NamedRDD {   def main(args: Array[String]) {      //    创建一个批处理时间是2s的context 要增加环境变量      val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[*]")      val ssc = new StreamingContext(sparkConf, Seconds(5))
    ssc.checkpoint("/opt/checkpoint")
     //    使用broker和topic创建DirectStream      val topicsSet = "test".split(",").toSet      val kafkaParams = Map[String, Object]("bootstrap.servers" -> "mt-mdh.local:9093",        "key.deserializer"->classOf[StringDeserializer],        "value.deserializer"-> classOf[StringDeserializer],        "group.id"->"test4",        "auto.offset.reset" -> "latest",        "enable.auto.commit"->(false: java.lang.Boolean))
    // 没有接口提供 offset      val messages = KafkaUtils.createDirectStream[String, String](        ssc,        LocationStrategies.PreferConsistent,        ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams,getLastOffsets(kafkaParams ,topicsSet)))//     var A:mutable.HashMap[String,Array[OffsetRange]] = new mutable.HashMap()
    val trans = messages.transform(r =>{       val offsetRanges = r.asInstanceOf[HasOffsetRanges].offsetRanges       A += ("rdd1"->offsetRanges)       r     }).countByWindow(Seconds(10), Seconds(5))     trans.foreachRDD(rdd=>{
      if(!rdd.isEmpty()){         val offsetRanges = A.get("rdd1").get//.asInstanceOf[HasOffsetRanges].offsetRanges
        rdd.foreachPartition { iter =>           val o: OffsetRange = offsetRanges(TaskContext.get.partitionId)           println(s"${o.topic} ${o.partition} ${o.fromOffset} ${o.untilOffset}")         }
        println(rdd.count())         println(offsetRanges)         // 手动提交offset ,前提是禁止自动提交         messages.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
      }//       A.-("rdd1")     })      //    启动流      ssc.start()      ssc.awaitTermination()    }  def getLastOffsets(kafkaParams : Map[String, Object],topics:Set[String]): Map[TopicPartition, Long] ={    val props = new Properties()    props.putAll(kafkaParams.asJava)    val consumer = new KafkaConsumer[String, String](props)    consumer.subscribe(topics.asJavaCollection)    paranoidPoll(consumer)    val map = consumer.assignment().asScala.map { tp =>      println(tp+"---" +consumer.position(tp))      tp -> (consumer.position(tp))    }.toMap    println(map)    consumer.close()    map  }  def paranoidPoll(c: Consumer[String, String]): Unit = {    val msgs = c.poll(0)    if (!msgs.isEmpty) {      // position should be minimum offset per topicpartition      msgs.asScala.foldLeft(Map[TopicPartition, Long]()) { (acc, m) =>        val tp = new TopicPartition(m.topic, m.partition)        val off = acc.get(tp).map(o => Math.min(o, m.offset)).getOrElse(m.offset)        acc + (tp -> off)      }.foreach { case (tp, off) =>        c.seek(tp, off)      }    }  }}

到此,关于“spark streaming窗口聚合操作后怎么管理offset”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


网站标题:sparkstreaming窗口聚合操作后怎么管理offset
新闻来源:http://6mz.cn/article/jhepej.html

其他资讯