快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

oracle10g性能调优

原文http://www.oracle.com/technetwork/articles/schumacher-analysis-099313.html

网站建设哪家好,找创新互联!专注于网页设计、网站建设、微信开发、小程序制作、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了凉州免费建站欢迎大家使用!

数据库Oracle 10 g,许多以前难以得到的响应时间指标马上就可以获得了。

历史上,为了获得最大的数据库性能,Oracle dba和性能分析人士为获得可靠的响应时间指标体系以及用户会话活动打了一场艰苦的战斗。dba一直面临的问题有两个方面:第一,确定数据库或用户会话花费他们的时间到底在哪里;第二,确定客观自然的用户体验。

考虑到在数据库中所有可能的活动和互动,这些任务是非比寻常的。Oracle等待接口,介绍了许多版本以前对于指导怎么使用它的管理员来说一直是一个伟大的启动,即使它缺乏告诉DBA系统或用户会话如何有效地处理事务或查询的理想能力。启用和研读跟踪文件可以获得这种层次的细节,但对大多数劳累的dba需要管理大型的数据库集群,这种练习是一种奢侈。

幸运的是,那些已经升级到Oracle dba 10 g的DBA们会发现主要响应时间系统的改进提供一个更好的图片展示系统和会话级响应时间指标系统。最重要的是,Oracle数据库自动诊断监控系统(ADDM)提供了洞察响应时间和更多信息通过自动收集统计分析,识别问题域,甚至通过Oracle Enterprise Manager Grid Control GUI提供建议。

此外,这儿最值得我们讨论的是,Oracle数据库10g的历史机制它允许dba回看之前的结果以实现自己的响应时间趋势分析,这有助于他们确定峰值和非高峰时间的事务/系统时间以及通过延长批周期或ETL作业定位流氓程序和SQL。

在这篇文章中,我将探讨在系统,会议,和SQL的水平使用其中的一些历史机制。关于ADDM的更多信息,请参阅甲骨文文档以及在” Arup Nanda's "Oracle Database 10g: Top 20 Features for DBAs”的“ADDM和SQL调优顾问“分期。

系统级响应时间分析

从全局或系统级别考虑,dba通常希望得到这些问题的答案:
总的来说,我的数据库运行得怎么样?定义效率的是什么?
我的用户体验平均响应时间是多少?
哪些活动最影响总体响应时间?

在Oracle 10 g数据库之前这些问题的答案对于DBA来说已经相当难以捉摸,但现在这样的指标可以是比较容易捕捉如果你碰巧使用最新和最伟大的Oracle数据库。
首先,部分答案如何,一般来说,运行中的数据库可以通过发送该查询在数据库Oracle 10 g中获得:

select  METRIC_NAME,
        VALUE
from    SYS.V_$SYSMETRIC
where   METRIC_NAME IN ('Database CPU Time Ratio',
                        'Database Wait Time Ratio') AND
        INTSIZE_CSEC = 
        (select max(INTSIZE_CSEC) from SYS.V_$SYSMETRIC); 

METRIC_NAME                         VALUE
------------------------------ ----------
Database Wait Time Ratio                6
Database CPU Time Ratio                94

The Oracle Database 10g V$SYSMETRIC view contains several excellent response-time metrics, two of which are the Database Wait Time Ratio and Database CPU Time Ratio. The query above shows the latest snapshot of these two statistics, which help you determine if your database is currently experiencing a high percentage of waits/bottlenecks vs. smoothly running operations. The Database CPU Time Ratio is calculated by dividing the amount of CPU expended in the database by the amount of "database time," which is defined as the time spent by the database on user-level calls (with instance background process activity being excluded). High values (90-95+ percent) are good and indicate few wait/bottleneck actions, but take this threshold only as a general rule of thumb because every system is different.

 

You can also take a quick look over the last hour to see if the database has experienced any dips in overall performance by using this query:

                               select  end_time,
        value
from    sys.v_$sysmetric_history
where   metric_name = 'Database CPU Time Ratio'
order by 1;

END_TIME                  VALUE
-------------------- ----------
22-NOV-2004 10:00:38         98
22-NOV-2004 10:01:39         96
22-NOV-2004 10:02:37         99
22-NOV-2004 10:03:38        100
22-NOV-2004 10:04:37         99
22-NOV-2004 10:05:38         77
22-NOV-2004 10:06:36        100
22-NOV-2004 10:07:37         96
22-NOV-2004 10:08:39        100
.
.

And, you can get a good idea of the minimum, maximum, and average values of overall database efficiency by querying the V$SYSMETRIC_SUMMARY view with a query such as this:

                               select  CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then 'SQL Service Response Time (secs)'
            WHEN 'Response Time Per Txn' then 'Response Time Per Txn (secs)'
            ELSE METRIC_NAME
            END METRIC_NAME,
                CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then ROUND((MINVAL / 100),2)
            WHEN 'Response Time Per Txn' then ROUND((MINVAL / 100),2)
            ELSE MINVAL
            END MININUM,
                CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then ROUND((MAXVAL / 100),2)
            WHEN 'Response Time Per Txn' then ROUND((MAXVAL / 100),2)
            ELSE MAXVAL
            END MAXIMUM,
                CASE METRIC_NAME
            WHEN 'SQL Service Response Time' then ROUND((AVERAGE / 100),2)
            WHEN 'Response Time Per Txn' then ROUND((AVERAGE / 100),2)
            ELSE AVERAGE
            END AVERAGE
from    SYS.V_$SYSMETRIC_SUMMARY 
where   METRIC_NAME in ('CPU Usage Per Sec',
                      'CPU Usage Per Txn',
                      'Database CPU Time Ratio',
                      'Database Wait Time Ratio',
                      'Executions Per Sec',
                      'Executions Per Txn',
                      'Response Time Per Txn',
                      'SQL Service Response Time',
                      'User Transaction Per Sec')
ORDER BY 1

METRIC_NAME                       MINIMUM    MAXIMUM    AVERAGE
------------------------------ ---------- ---------- ----------
CPU Usage Per Sec                       0          7          1
CPU Usage Per Txn                       1         29          8
Database CPU Time Ratio                61        100         94
Database Wait Time Ratio                0         39          5
Executions Per Sec                      2         60          8
Executions Per Txn                     16        164         41
Response Time Per Txn (secs)            0        .28        .08
SQL Service Response Time (sec          0          0          0
User Transaction Per Sec                0          1          0

The query above contains more response-time metrics than simply the Database CPU and Wait Time Ratios (we'll cover those later), but you can see the benefit in being able to acquire this information. For this particular instance, the average Database CPU Time Ratio is 94, which is well within our acceptable limits.

The next question DBAs pose at the system level involves the average level of response time that their user community is experiencing. (Prior to Oracle Database 10g this type of data was difficult to capture, but not anymore.) The query shown above that interrogates the V$SYSMETRIC_SUMMARY view tells us what we need to know. If complaints of unacceptable response times are mounting from users, the DBA can check the Response Time Per Txn and SQL Service Response Time metrics to see if a database issue exists. For example, the statistics shown above report that the maximum response time per user transaction has been only .28 second, with the average response time being a blazing .08 second. Oracle certainly wouldn't be to blame in this case.

If, however, response times are longer than desired, the DBA will then want to know what types of user activities are responsible for making the database work so hard. Again, before Oracle Database 10g, this information was more difficult to acquire, but now the answer is only a query away:

                               select  case db_stat_name
            when 'parse time elapsed' then 
                'soft parse time'
            else db_stat_name
            end db_stat_name,
        case db_stat_name
            when 'sql execute elapsed time' then 
                time_secs - plsql_time 
            when 'parse time elapsed' then 
                time_secs - hard_parse_time
            else time_secs
            end time_secs,
        case db_stat_name
            when 'sql execute elapsed time' then 
                round(100 * (time_secs - plsql_time) / db_time,2)
            when 'parse time elapsed' then 
                round(100 * (time_secs - hard_parse_time) / db_time,2)  
            else round(100 * time_secs / db_time,2)  
            end pct_time
from
(select stat_name db_stat_name,
        round((value / 1000000),3) time_secs
    from sys.v_$sys_time_model
    where stat_name not in('DB time','background elapsed time',
                            'background cpu time','DB CPU')),
(select round((value / 1000000),3) db_time 
    from sys.v_$sys_time_model 
    where stat_name = 'DB time'),
(select round((value / 1000000),3) plsql_time 
    from sys.v_$sys_time_model 
    where stat_name = 'PL/SQL execution elapsed time'),
(select round((value / 1000000),3) hard_parse_time 
    from sys.v_$sys_time_model 
    where stat_name = 'hard parse elapsed time')
order by 2 desc;


DB_STAT                          TIME_SECS       PCT_TIME
-----------------------------    ---------       --------
sql execute elapsed time         13263.707       45.84                                 
PL/SQL execution elapsed time    13234.738       45.74                                 
hard parse elapsed time           1943.687        6.72                                  
soft parse time                    520.584         1.8
.
.

The example output above shows a database that has spent the vast majority of its time handling SQL and PL/SQL requests. Complete descriptions of all the statistics supported by the V$SYS_TIME_MODEL view can be found here.

In addition to active time, a DBA will want to know the global wait times as well. Prior to Oracle Database 10g, a DBA had to view individual wait events to understand waits and bottlenecks, but now Oracle provides a summary/rollup mechanism for waits via wait classes:

                               select  WAIT_CLASS,
        TOTAL_WAITS,
        round(100 * (TOTAL_WAITS / SUM_WAITS),2) PCT_WAITS,
        ROUND((TIME_WAITED / 100),2) TIME_WAITED_SECS,
        round(100 * (TIME_WAITED / SUM_TIME),2) PCT_TIME
from
(select WAIT_CLASS,
        TOTAL_WAITS,
        TIME_WAITED
from    V$SYSTEM_WAIT_CLASS
where   WAIT_CLASS != 'Idle'),
(select  sum(TOTAL_WAITS) SUM_WAITS,
        sum(TIME_WAITED) SUM_TIME
from    V$SYSTEM_WAIT_CLASS
where   WAIT_CLASS != 'Idle')
order by 5 desc;

WAIT_CLASS      TOTAL_WAITS  PCT_WAITS TIME_WAITED_SECS   PCT_TIME
--------------- ----------- ---------- ---------------- ----------
User I/O            2245204       7.48          4839.43      54.39
System I/O          2438387       8.12          2486.21      27.94
Application          920385       3.07           513.56       5.77
Other                 39962        .13           422.36       4.75
Commit               200872        .67           284.76        3.2
Network            24133213      80.38           162.26       1.82
Concurrency            6867        .02           102.63       1.15
Configuration         39377        .13            86.21        .97

It's much easier to tell now that the bulk of overall wait time is due, for example, to user I/O waits than to try to tally individual wait events to get a global picture. As with response-time metrics, you can also look back in time over the last hour with a query like this one:

                               select  to_char(a.end_time,'DD-MON-YYYY HH:MI:SS') end_time,
        b.wait_class,
        round((a.time_waited / 100),2) time_waited 
from    sys.v_$waitclassmetric_history a,
        sys.v_$system_wait_class b
where   a.wait_class# = b.wait_class# and
        b.wait_class != 'Idle'
order by 1,2;

END_TIME             WAIT_CLASS      TIME_WAITED
-------------------- --------------- -----------
22-NOV-2004 11:28:37 Application               0
22-NOV-2004 11:28:37 Commit                  .02
22-NOV-2004 11:28:37 Concurrency               0
22-NOV-2004 11:28:37 Configuration             0
22-NOV-2004 11:28:37 Network                 .01
22-NOV-2004 11:28:37 Other                     0
22-NOV-2004 11:28:37 System I/O              .05
22-NOV-2004 11:28:37 User I/O                  0
.
.

You can, of course, just focus on a single SID with the V$SESS_TIME_MODEL view and obtain data for all statistical areas of a session. You can also view current session wait activity using the new wait classes using the following query:

                               select  a.sid,
        b.username,
        a.wait_class,
        a.total_waits,
        round((a.time_waited / 100),2) time_waited_secs
from    sys.v_$session_wait_class a,
        sys.v_$session b
where   b.sid = a.sid and
        b.username is not null and
        a.wait_class != 'Idle'
order by 5 desc;

SID USERNAME   WAIT_CLASS      TOTAL_WAITS TIME_WAITED_SECS
--- ---------- --------------- ----------- ----------------
257 SYSMAN     Application          356104            75.22
255 SYSMAN     Commit                14508            25.76
257 SYSMAN     Commit                25026            22.02
257 SYSMAN     User I/O              11924            19.98
.
.
.

After this stage, you can check the standard individual wait events as you've been able to do in earlier versions of Oracle with V$SESSION_WAIT and V$SESSION_EVENT. You'll also find the new wait classes in these two modified views with Oracle Database 10g.

If you need to look back in time to discover what sessions were logged on and consuming the most resources, you can use the following query. In the example below, we're looking at activity from midnight to 5 a.m. on November 21, 2004, that involved user I/O waits:

                               select  sess_id,
        username,
        program,
        wait_event,
        sess_time,
        round(100 * (sess_time / total_time),2) pct_time_waited
from
(select a.session_id sess_id,
        decode(session_type,'background',session_type,c.username) username,
        a.program program,
        b.name wait_event,
        sum(a.time_waited) sess_time
from    sys.v_$active_session_history a,
        sys.v_$event_name b,
        sys.dba_users c
where   a.event# = b.event# and
        a.user_id = c.user_id and
        sample_time > '21-NOV-04 12:00:00 AM' and 
        sample_time < '21-NOV-04 05:00:00 AM' and
        b.wait_class = 'User I/O'
group by a.session_id,
        decode(session_type,'background',session_type,c.username),
        a.program,
        b.name),
(select sum(a.time_waited) total_time
from    sys.v_$active_session_history a,
        sys.v_$event_name b
where   a.event# = b.event# and
        sample_time > '21-NOV-04 12:00:00 AM' and 
        sample_time < '21-NOV-04 05:00:00 AM' and
        b.wait_class = 'User I/O')
order by 6 desc;

SESS_ID USERNAME PROGRAM    WAIT_EVENT                SESS_TIME PCT_TIME_WAITED
------- -------- ---------- ------------------------- ---------- -------------
    242 SYS      exp@RHAT9K db file scattered read       3502978         33.49
    242 SYS      oracle@RHA db file sequential read      2368153         22.64
    242 SYS      oracle@RHA db file scattered read       1113896         10.65
    243 SYS      oracle@RHA db file sequential read       992168          9.49

The Oracle Database 10g V$ACTIVE_SESSION_HISTORY view comes into play here to provide an insightful look back in time at session experiences for a given time period. This view gives you a lot of excellent information without the need for laborious tracing functions. We'll see more use of it in the next section, which deals with analyzing the response times of SQL statements.

SQL Response-Time Analysis

Examining the response time of SQL statements became easier in Oracle9i, and with Oracle Database 10g, DBAs have many tools at their disposal to help them track inefficient database code.

Historically the applicable V$ view here has been V$SQLAREA. Starting with Oracle9i, Oracle added the ELAPSED_TIME and CPU_TIME columns, which have been a huge help in determining the actual end user experience of a SQL statement execution (at least, when dividing them by the EXECUTIONS column, which produces the average amount of time per execution).

In Oracle Database 10g, six new wait-related and timing columns have been added to V$SQLAREA:

  • APPLICATION_WAIT_TIME

  • CONCURRENCY_WAIT_TIME

  • CLUSTER_WAIT_TIME

  • USER_IO_WAIT_TIME

  • PLSQL_EXEC_TIME

  • JAVA_EXEC_TIME

The new columns are helpful in determining, for example, the amount of time that a procedure spends in PL/SQL code vs. standard SQL execution, and if a SQL statement has experienced any particular user I/O waits. For example, a query you could use to find the top five SQL statements with the highest user I/O waits would be:

                               select *
from
(select sql_text,
        sql_id,
        elapsed_time,
        cpu_time,
        user_io_wait_time
from    sys.v_$sqlarea
order by 5 desc)
where rownum < 6;

SQL_TEXT                  SQL_ID       ELAPSED_TIME CPU_TIME  USER_IO_WAIT_TIME
------------------------- ------------ ------------ ---------- ---------------
select /*+ rule */ bucket db78fxqxwxt7     47815369   19000939            3423
SELECT :"SYS_B_0" FROM SY agdpzr94rf6v     36182205   10170226            2649
select obj#,type#,ctime,m 04xtrk7uyhkn     28815527   16768040            1345
select grantee#,privilege 2q93zsrvbdw4     28565755   19619114             803
select /*+ rule */ bucket 96g93hntrzjt      9411028    3754542             606

Of course, getting the SQL statements with the highest elapsed time or wait time is good, but you need more detail to get to the heart of the matterwhich is where the V$ACTIVE_SESSION_HISTORY view again comes into play. With this view, you can find out what actual wait events delayed the SQL statement along with the actual files, objects, and object blocks that caused the waits (where applicable).

For example, let's say you've found a particular SQL statement that appears to be extremely deficient in terms of user I/O wait time. You can issue the following query to get the individual wait events associated with the query along with the corresponding wait times, files, and objects that were the source of those waits:

                               select event,
        time_waited,
        owner,
        object_name,
        current_file#,
        current_block# 
from    sys.v_$active_session_history a,
        sys.dba_objects b 
where   sql_id = '6gvch2xu9ca3g' and
        a.current_obj# = b.object_id and
        time_waited <> 0;

EVENT                     TIME_WAITED OWNER  OBJECT_NAME           file  block
------------------------- ----------- ------ --------------------- ---- ------
db file sequential read         27665 SYSMAN MGMT_METRICS_1HOUR_PK    3  29438
db file sequential read          3985 SYSMAN SEVERITY_PRIMARY_KEY     3  52877

Of course, you can use V$ACTIVE_SESSION_HISTORY in a historical fashion to narrow down unoptimized SQL statements for a particular time period. The point is that Oracle Database 10g makes it a lot easier to conduct response-time analysis on SQL statements with simplified data dictionary views, as opposed to the time-consuming trace-and-digest method.

Conclusion

DBAs and performance analysts who manage the performance of Oracle Database 10g will find many of the response-time metrics they've yearned for over the years now at their fingertips in the latest release of Oracle's flagship database. Such statistics will help accelerate the process of finding the proverbial needle in the haystack of large and complex database performance situations.

Oracle性能调优:时间的有限和无限
http://www.uml.org.cn/sjjm/200606204.htm


当前名称:oracle10g性能调优
URL标题:http://6mz.cn/article/ipspop.html

其他资讯