快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

怎么用python进行销量预测

这篇文章主要介绍“怎么用python进行销量预测”,在日常操作中,相信很多人在怎么用python进行销量预测问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用python进行销量预测”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

创新互联公司长期为上千多家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为高明企业提供专业的成都网站建设、网站建设高明网站改版等技术服务。拥有10多年丰富建站经验和众多成功案例,为您定制开发。

  • 案件回顾

饭团销售额下滑

  1. 现有冰激凌店一年的历史销售数据

  2. 数据包括单日的销售量、气温、周几(问题:如何用这些数据预测冰激凌的销量?)

  • 模拟实验与分析

将数据存储为csv格式,导入python。并画出散点图,观察气温和销售量的关系。

import pandas as pd

icecream = pd.read_csv("icecream.csv")

import matplotlib.pyplot as plt

import pylab

plt.rcParams['font.sans-serif'] = ['SimHei']  

plt.scatter(icecream.iloc[:,1],icecream.iloc[:,0])

plt.xlabel("气温")

plt.ylabel("销售量")

pylab.show()

怎么用python进行销量预测

计算两者间的相关系数。

icecream.iloc[:,0:2].corr()

结果为:


销售量气温
销售量1.0000000.844211
气温0.8442111.000000

销售量和气温的相关系数为0.84,结合散点图,认为两者相关。下面用回归分析的方法,通过气温来预测冰激凌销量。

from sklearn.linear_model import LinearRegression

model = LinearRegression()

feature_cols = ['气温']  

X = icecream[feature_cols]  

y = icecream.销售量  

model.fit(X,y)

plt.scatter(icecream.气温, icecream.销售量)  

plt.plot(icecream.气温, model.predict(X) , color='blue')  

plt.xlabel('气温')  

plt.ylabel('销售量')  

plt.show()  

print("截距与斜率:",model.intercept_,model.coef_)

怎么用python进行销量预测

截距与斜率: 57.1673282152 [ 5.21607823]

于是,散点图中的线函数式为y=5.2X+57.2。所以,当气温为25度时,预测的销售量为5.2*25+57.2=187.52,约188个。

  • 几个小概念

回归分析:预测数据时的简便手法。在此例中,销售量为反应变量,也叫因变量,气温为解释变量,也叫自变量。虽然影响销售量的因素除了气温外还有很多,但回归分析中我们要把现实情况简化并公式化,这个过程叫做建模。本例中只用1个解释变量进行模型化称为一元线性回归,如果反应变量同时受到多个解释变量的影响,称为多元线性回归。

到此,关于“怎么用python进行销量预测”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


新闻标题:怎么用python进行销量预测
当前URL:http://6mz.cn/article/ipjohe.html

其他资讯