十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章主要介绍“kafka的设计原理”,在日常操作中,相信很多人在kafka的设计原理问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”kafka的设计原理”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
创新互联公司专业提供德阳电信服务器托管服务,为用户提供五星数据中心、电信、双线接入解决方案,用户可自行在线购买德阳电信服务器托管服务,并享受7*24小时金牌售后服务。
kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力.
1、持久性
kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化几乎没有可能.文件缓存/直接内存映射等是常用的手段.因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数.
2、性能
需要考虑的影响性能点很多,除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题.kafka并没有提供太多高超的技巧;对于producer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息.不过消息量的大小可以通过配置文件来指定.对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次copy和交换. 其实对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑.可以将任何在网络上传输的消息都经过压缩.kafka支持gzip/snappy等多种压缩方式.
3、生产者
负载均衡: producer将会和Topic下所有partition leader保持socket连接;消息由producer直接通过socket发送到broker,中间不会经过任何"路由层".事实上,消息被路由到哪个partition上,有producer客户端决定.比如可以采用"random""key-hash""轮询"等,如果一个topic中有多个partitions,那么在producer端实现"消息均衡分发"是必要的.
其中partition leader的位置(host:port)注册在zookeeper中,producer作为zookeeper client,已经注册了watch用来监听partition leader的变更事件.
异步发送:将多条消息暂且在客户端buffer起来,并将他们批量的发送到broker,小数据IO太多,会拖慢整体的网络延迟,批量延迟发送事实上提升了网络效率。不过这也有一定的隐患,比如说当producer失效时,那些尚未发送的消息将会丢失。
4、消费者
consumer端向broker发送"fetch"请求,并告知其获取消息的offset;此后consumer将会获得一定条数的消息;consumer端也可以重置offset来重新消费消息.
在JMS实现中,Topic模型基于push方式,即broker将消息推送给consumer端.不过在kafka中,采用了pull方式,即consumer在和broker建立连接之后,主动去pull(或者说fetch)消息;这中模式有些优点,首先consumer端可以根据自己的消费能力适时的去fetch消息并处理,且可以控制消息消费的进度(offset);此外,消费者可以良好的控制消息消费的数量,batch fetch.
其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态.这就要求JMSbroker需要太多额外的工作.在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的.当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset.由此可见,consumer客户端也很轻量级.
5、消息传送机制
对于JMS实现,消息传输担保非常直接:有且只有一次(exactly once).在kafka中稍有不同:
1) at most once: 最多一次,这个和JMS中"非持久化"消息类似.发送一次,无论成败,将不会重发.
2) at least once: 消息至少发送一次,如果消息未能接受成功,可能会重发,直到接收成功.
3) exactly once: 消息只会发送一次.
at most once: 消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理.那么此后"未处理"的消息将不能被fetch到,这就是"at most once".
at least once: 消费者fetch消息,然后处理消息,然后保存offset.如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存操作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态.
exactly once: kafka中并没有严格的去实现(基于2阶段提交,事务),我们认为这种策略在kafka中是没有必要的.
通常情况下"at-least-once"是我们搜选.(相比at most once而言,重复接收数据总比丢失数据要好).
6、复制备份
kafka将每个partition数据复制到多个server上,任何一个partition有一个leader和多个follower(可以没有);备份的个数可以通过broker配置文件来设定.leader处理所有的read-write请求,follower需要和leader保持同步.Follower和consumer一样,消费消息并保存在本地日志中;leader负责跟踪所有的follower状态,如果follower"落后"太多或者失效,leader将会把它从replicas同步列表中删除.当所有的follower都将一条消息保存成功,此消息才被认为是"committed",那么此时consumer才能消费它.即使只有一个replicas实例存活,仍然可以保证消息的正常发送和接收,只要zookeeper集群存活即可.(不同于其他分布式存储,比如hbase需要"多数派"存活才行)
当leader失效时,需在followers中选取出新的leader,可能此时follower落后于leader,因此需要选择一个"up-to-date"的follower.选择follower时需要兼顾一个问题,就是新leader server上所已经承载的partition leader的个数,如果一个server上有过多的partitionleader,意味着此server将承受着更多的IO压力.在选举新leader,需要考虑到"负载均衡".
7.日志
如果一个topic的名称为"my_topic",它有2个partitions,那么日志将会保存在my_topic_0和my_topic_1两个目录中;日志文件中保存了一序列"log entries"(日志条目),每个log entry格式为"4个字节的数字N表示消息的长度" + "N个字节的消息内容";每个日志都有一个offset来唯一的标记一条消息,offset的值为8个字节的数字,表示此消息在此partition中所处的起始位置..每个partition在物理存储层面,有多个logfile组成(称为segment).segment file的命名为"最小offset".kafka.例如"00000000000.kafka";其中"最小offset"表示此segment中起始消息的offset.
其中每个partiton中所持有的segments列表信息会存储在zookeeper中.
当segment文件尺寸达到一定阀值时(可以通过配置文件设定,默认1G),将会创建一个新的文件;当buffer中消息的条数达到阀值时将会触发日志信息flush到日志文件中,同时如果"距离最近一次flush的时间差"达到阀值时,也会触发flush到日志文件.如果broker失效,极有可能会丢失那些尚未flush到文件的消息.因为server意外实现,仍然会导致log文件格式的破坏(文件尾部),那么就要求当server启东是需要检测最后一个segment的文件结构是否合法并进行必要的修复.
获取消息时,需要指定offset和最大chunk尺寸,offset用来表示消息的起始位置,chunk size用来表示最大获取消息的总长度(间接的表示消息的条数).根据offset,可以找到此消息所在segment文件,然后根据segment的最小offset取差值,得到它在file中的相对位置,直接读取输出即可.
日志文件的删除策略非常简单:启动一个后台线程定期扫描log file列表,把保存时间超过阀值的文件直接删除(根据文件的创建时间).为了避免删除文件时仍然有read操作(consumer消费),采取copy-on-write方式.
8、分配
kafka使用zookeeper来存储一些meta信息,并使用了zookeeper watch机制来发现meta信息的变更并作出相应的动作(比如consumer失效,触发负载均衡等)
1) Broker noderegistry: 当一个kafkabroker启动后,首先会向zookeeper注册自己的节点信息(临时znode),同时当broker和zookeeper断开连接时,此znode也会被删除.
格式: /broker/ids/[0...N] -->host:port;其中[0..N]表示broker id,每个broker的配置文件中都需要指定一个数字类型的id(全局不可重复),znode的值为此broker的host:port信息.
2) Broker TopicRegistry: 当一个broker启动时,会向zookeeper注册自己持有的topic和partitions信息,仍然是一个临时znode.
格式: /broker/topics/[topic]/[0...N] 其中[0..N]表示partition索引号.
3) Consumer andConsumer group: 每个consumer客户端被创建时,会向zookeeper注册自己的信息;此作用主要是为了"负载均衡".
一个group中的多个consumer可以交错的消费一个topic的所有partitions;简而言之,保证此topic的所有partitions都能被此group所消费,且消费时为了性能考虑,让partition相对均衡的分散到每个consumer上.
4) Consumer idRegistry: 每个consumer都有一个唯一的ID(host:uuid,可以通过配置文件指定,也可以由系统生成),此id用来标记消费者信息.
格式: /consumers/[group_id]/ids/[consumer_id]
仍然是一个临时的znode,此节点的值为{"topic_name":#streams...},即表示此consumer目前所消费的topic + partitions列表.
5) Consumer offsetTracking: 用来跟踪每个consumer目前所消费的partition中最大的offset.
格式:/consumers/[group_id]/offsets/[topic]/[broker_id-partition_id]-->offset_value
此znode为持久节点,可以看出offset跟group_id有关,以表明当group中一个消费者失效,其他consumer可以继续消费.
6) Partition Ownerregistry: 用来标记partition被哪个consumer消费.临时znode
格式: /consumers/[group_id]/owners/[topic]/[broker_id-partition_id]-->consumer_node_id当consumer启动时,所触发的操作:
A) 首先进行"Consumer id Registry";
B) 然后在"Consumer id Registry"节点下注册一个watch用来监听当前group中其他consumer的"leave"和"join";只要此znode path下节点列表变更,都会触发此group下consumer的负载均衡.(比如一个consumer失效,那么其他consumer接管partitions).
C) 在"Broker id registry"节点下,注册一个watch用来监听broker的存活情况;如果broker列表变更,将会触发所有的groups下的consumer重新balance.
1) Producer端使用zookeeper用来"发现"broker列表,以及和Topic下每个partition leader建立socket连接并发送消息.
2) Broker端使用zookeeper用来注册broker信息,已经监测partition leader存活性.
3) Consumer端使用zookeeper用来注册consumer信息,其中包括consumer消费的partition列表等,同时也用来发现broker列表,并和partition leader建立socket连接,并获取消息.
到此,关于“kafka的设计原理”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!