十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
本篇内容主要讲解“总结Thread线程,状态转换、方法使用、原理分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“总结Thread线程,状态转换、方法使用、原理分析”吧!
成都创新互联公司长期为上千客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为镇沅企业提供专业的网站设计、成都网站建设,镇沅网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。
考不常用的、考你不会的、考你忽略的,才是考试!
大部分考试考的,基本都是不怎么用的。例外的咱们不说???? 就像你做程序开发,尤其在RPC+MQ+分库分表,其实很难出现让你用一个机器实例编写多线程压榨CPU性能。很多时候是扔出一个MQ,异步消费了。如果没有资源竞争,例如库表秒杀,那么其实你确实很难接触多并发编程以及锁的使用。
但!凡有例外,比如你需要开发一个数据库路由中间件,那么就肯定会出现在一台应用实例上分配数据库资源池的情况,如果出现竞争就要合理分配资源。如此,类似这样的中间件开发,就会涉及到一些更核心底层的技术的应用。
所以,有时候不是没用
,而是你没有用。
谢飞机,小记!
线程我玩定了,面试也拦不住我,我说的!
「谢飞机」:嘿,你好哇,我是谢飞机!
「面试官」:好,今天电话面试,你准备好了?
「谢飞机」:准备好了,嘿嘿!
「面试官」:嗯,我看你简历里写了不少线程的东西,看来了解的不错。问你一个线程吧那就,线程之间状态是怎么转换的?
「谢飞机」:扒拉扒拉,扒拉扒拉!
「面试官」:嗯,还不错。那 yield 方法是怎么使用的。
「谢飞机」:嗯!好像是让出CPU。具体的没怎么用过!
「面试官」:做做测试,验证下,下次问你。
Java 的线程状态描述在枚举类 java.lang.Thread.State
中,共包括如下五种状态:
public enum State {
NEW, RUNNABLE, BLOCKED, WAITING, TIMED_WAITING, TERMINATED;
}
这五种状态描述了一个线程的生命周期,其实这种状态码的定义在我们日常的业务开发中,也经常出现。比如:一个活动的提交、审核、拒绝、修改、通过、运行、关闭等,是类似的。那么线程的状态是通过下图的方式进行流转的,如图 20-1
New
:新创建的一个线程,处于等待状态。Runnable
:可运行状态,并不是已经运行,具体的线程调度各操作系统决定。在 Runnable 中包含了
Ready
、
Running
两个状态,当线程调用了 start() 方法后,线程则处于就绪 Ready 状态,等待操作系统分配 CPU 时间片,分配后则进入 Running 运行状态。此外当调用 yield() 方法后,只是
谦让的允许当前线程让出CPU,但具体让不让不一定,由操作系统决定。如果让了,那么当前线程则会处于 Ready 状态继续竞争CPU,直至执行。Timed_waiting
:指定时间内让出CPU资源,此时线程不会被执行,也不会被系统调度,直到等待时间到期后才会被执行。下列方法都可以触发:
Thread.sleep
、
Object.wait
、
Thread.join
、
LockSupport.parkNanos
、
LockSupport.parkUntil
。Wating
:可被唤醒的等待状态,此时线程不会被执行也不会被系统调度。此状态可以通过 synchronized 获得锁,调用 wait 方法进入等待状态。最后通过 notify、notifyall 唤醒。下列方法都可以触发:
Object.wait
、
Thread.join
、
LockSupport.park
。Blocked
:当发生锁竞争状态下,没有获得锁的线程会处于挂起状态。例如 synchronized 锁,先获得的先执行,没有获得的进入阻塞状态。Terminated
:这个是终止状态,从 New 到 Terminated 是不可逆的。一般是程序流程正常结束或者发生了异常。这里参考枚举State
类的英文注释了解了每一个状态码的含义,接下来我们去尝试操作线程方法,把这些状态体现出来。
Thread thread = new Thread(() -> {
});
System.out.println(thread.getState());
// NEW
Thread thread = new Thread(() -> {
});
// 启动
thread.start();
System.out.println(thread.getState());
// RUNNABLE
start()
,就会进入 RUNNABLE 状态。但此时并不一定在执行,而是说这个线程已经就绪,可以竞争 CPU 资源。 Object obj = new Object();
new Thread(() -> {
synchronized (obj) {
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
Thread thread = new Thread(() -> {
synchronized (obj) {
try {
obj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
thread.start();
while (true) {
Thread.sleep(1000);
System.out.println(thread.getState());
}
// BLOCKED
// BLOCKED
// BLOCKED
BLOCKED
Object obj = new Object();
Thread thread = new Thread(() -> {
synchronized (obj) {
try {
obj.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
thread.start();
while (true) {
Thread.sleep(1000);
System.out.println(thread.getState());
}
// WAITING
// WAITING
// WAITING
wait
方法,又没有被 notify 就会进入
WAITING
状态。Thread.join
源码中也是调用的 wait 方法,所以也会让线程进入等待状态。 Object obj = new Object();
Thread thread = new Thread(() -> {
synchronized (obj) {
try {
Thread.sleep(100000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
thread.start();
while (true) {
Thread.sleep(1000);
System.out.println(thread.getState());
}
// TIMED_WAITING
// TIMED_WAITING
// TIMED_WAITING
Thread.sleep(100000);
就可以了。Thread thread = new Thread(() -> {
});
thread.start();
System.out.println(thread.getState());
System.out.println(thread.getState());
System.out.println(thread.getState());
// RUNNABLE
// TERMINATED
// TERMINATED
TERMINATED
状态。一般情况下 Thread 中最常用的方法就是 start 启动,除此之外一些其他方法可能在平常的开发中用的不多,但这些方法在一些框架中却经常出现。因此只了解它们的概念,但是却缺少一些实例来参考! 接下来我们就来做一些案例来验证这些方法,包括:yield、wait、notify、join。
yield 方法让出CPU,但不一定,一定让出!。这种可能会用在一些同时启动的线程中,按照优先级保证重要线程的执行,也可以是其他一些特殊的业务场景(例如这个线程内容很耗时,又不那么重要,可以放在后面)。
为了验证这个方法,我们做一个例子:启动50个线程进行,每个线程都进行1000次的加和计算。其中10个线程会执行让出CPU操作。「那么」,如果让出CPU那10个线程的计算加和时间都比较长,说明确实在进行让出操作。
「案例代码」
private static volatile Map count = new ConcurrentHashMap<>();
static class Y implements Runnable {
private String name;
private boolean isYield;
public Y(String name, boolean isYield) {
this.name = name;
this.isYield = isYield;
}
@Override
public void run() {
long l = System.currentTimeMillis();
for (int i = 0; i < 1000; i++) {
if (isYield) Thread.yield();
AtomicInteger atomicInteger = count.get(name);
if (null == atomicInteger) {
count.put(name, new AtomicInteger(1));
continue;
}
atomicInteger.addAndGet(1);
count.put(name, atomicInteger);
}
System.out.println("线程编号:" + name + " 执行完成耗时:" + (System.currentTimeMillis() - l) + " (毫秒)" + (isYield ? "让出CPU----------------------" : "不让CPU"));
}
}
public static void main(String[] args) {
for (int i = 0; i < 50; i++) {
if (i < 10) {
new Thread(new Y(String.valueOf(i), true)).start();
continue;
}
new Thread(new Y(String.valueOf(i), false)).start();
}
}
「测试结果」
线程编号:10 执行完成耗时:2 (毫秒)不让CPU
线程编号:11 执行完成耗时:2 (毫秒)不让CPU
线程编号:15 执行完成耗时:1 (毫秒)不让CPU
线程编号:14 执行完成耗时:1 (毫秒)不让CPU
线程编号:19 执行完成耗时:1 (毫秒)不让CPU
线程编号:18 执行完成耗时:1 (毫秒)不让CPU
线程编号:22 执行完成耗时:0 (毫秒)不让CPU
线程编号:26 执行完成耗时:0 (毫秒)不让CPU
线程编号:27 执行完成耗时:1 (毫秒)不让CPU
线程编号:30 执行完成耗时:0 (毫秒)不让CPU
线程编号:31 执行完成耗时:0 (毫秒)不让CPU
线程编号:34 执行完成耗时:1 (毫秒)不让CPU
线程编号:12 执行完成耗时:1 (毫秒)不让CPU
线程编号:16 执行完成耗时:1 (毫秒)不让CPU
线程编号:13 执行完成耗时:1 (毫秒)不让CPU
线程编号:17 执行完成耗时:1 (毫秒)不让CPU
线程编号:20 执行完成耗时:0 (毫秒)不让CPU
线程编号:23 执行完成耗时:0 (毫秒)不让CPU
线程编号:21 执行完成耗时:0 (毫秒)不让CPU
线程编号:25 执行完成耗时:1 (毫秒)不让CPU
线程编号:24 执行完成耗时:1 (毫秒)不让CPU
线程编号:28 执行完成耗时:0 (毫秒)不让CPU
线程编号:38 执行完成耗时:0 (毫秒)不让CPU
线程编号:39 执行完成耗时:0 (毫秒)不让CPU
线程编号:37 执行完成耗时:1 (毫秒)不让CPU
线程编号:40 执行完成耗时:0 (毫秒)不让CPU
线程编号:44 执行完成耗时:0 (毫秒)不让CPU
线程编号:36 执行完成耗时:1 (毫秒)不让CPU
线程编号:42 执行完成耗时:1 (毫秒)不让CPU
线程编号:45 执行完成耗时:1 (毫秒)不让CPU
线程编号:43 执行完成耗时:1 (毫秒)不让CPU
线程编号:46 执行完成耗时:0 (毫秒)不让CPU
线程编号:47 执行完成耗时:0 (毫秒)不让CPU
线程编号:35 执行完成耗时:0 (毫秒)不让CPU
线程编号:33 执行完成耗时:0 (毫秒)不让CPU
线程编号:32 执行完成耗时:0 (毫秒)不让CPU
线程编号:41 执行完成耗时:0 (毫秒)不让CPU
线程编号:48 执行完成耗时:1 (毫秒)不让CPU
线程编号:6 执行完成耗时:15 (毫秒)让出CPU----------------------
线程编号:7 执行完成耗时:15 (毫秒)让出CPU----------------------
线程编号:49 执行完成耗时:2 (毫秒)不让CPU
线程编号:29 执行完成耗时:1 (毫秒)不让CPU
线程编号:2 执行完成耗时:17 (毫秒)让出CPU----------------------
线程编号:1 执行完成耗时:11 (毫秒)让出CPU----------------------
线程编号:4 执行完成耗时:15 (毫秒)让出CPU----------------------
线程编号:8 执行完成耗时:12 (毫秒)让出CPU----------------------
线程编号:5 执行完成耗时:12 (毫秒)让出CPU----------------------
线程编号:9 执行完成耗时:12 (毫秒)让出CPU----------------------
线程编号:0 执行完成耗时:21 (毫秒)让出CPU----------------------
线程编号:3 执行完成耗时:21 (毫秒)让出CPU----------------------
wait 和 notify/nofityall,是一对方法,有一个等待,就会有一个叫醒,否则程序就夯在那不动了。关于这部分会使用到的 synchronized
在之前小傅哥有深入的源码分析,讲到它是怎么加锁在对象头的,如果你忘记了可以翻翻看 《synchronized 解毒,剖析源码深度分析!》
接下来我们模拟鹿鼎记·丽春院,清倌喝茶吟诗聊风月日常。当有达官贵人来时,需要分配清倌给大老爷。中间会有一些等待、叫醒操作。只为让你更好的记住这样的案例,不要想歪喽。清倌人即是只卖艺欢场人,喊麦的。
「案例代码」
public class 丽春院 {
public static void main(String[] args) {
老鸨 鸨子 = new 老鸨();
清倌 miss = new 清倌(鸨子);
客官 guest = new 客官(鸨子);
Thread t_miss = new Thread(miss);
Thread t_guest = new Thread(guest);
t_miss.start();
t_guest.start();
}
}
class 清倌 implements Runnable {
老鸨 鸨子;
public 清倌(老鸨 鸨子) {
this.鸨子 = 鸨子;
}
@Override
public void run() {
int i = 1;
while (true) {
try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
if (i == 1) {
try {
鸨子.在岗清倌("苍田野子", "500 日元");
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
try {
鸨子.在岗清倌("花田岗子", "800 日元");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
i = (i + 1) % 2;
}
}
}
class 客官 implements Runnable {
老鸨 鸨子;
public 客官(老鸨 鸨子) {
this.鸨子 = 鸨子;
}
@Override
public void run() {
while (true) {
try {
Thread.sleep(1000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
try {
鸨子.喝茶吟诗聊风月();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class 老鸨 {
private String 清倌 = null;
private String price = null;
private boolean 工作状态 = true;
public synchronized void 在岗清倌(String 清倌, String price) throws InterruptedException {
if (!工作状态)
wait();//等待
this.清倌 = 清倌;
this.price = price;
工作状态 = false;
notify();//叫醒
}
public synchronized void 喝茶吟诗聊风月() throws InterruptedException {
if (工作状态)
wait();//等待
System.out.println("聊风月:" + 清倌);
System.out.println("茶水费:" + price);
System.out.println(" " + " " + " " + " " + " " + " " + " " + " " + " " + " " + 清倌 + "完事" + "准备 ... ...");
System.out.println("****************************************");
工作状态 = true;
notify();//叫醒
}
}
「测试结果」
聊风月:苍田野子
茶水费:500 日元
苍田野子完事准备 ... ...
****************************************
聊风月:花田岗子
茶水费:800 日元
花田岗子完事准备 ... ...
****************************************
聊风月:苍田野子
茶水费:500 日元
苍田野子完事准备 ... ...
****************************************
...
join 是两个线程的合并吗?不是的!
join 是让线程进入 wait ,当线程执行完毕后,会在JVM源码中找到,它执行完毕后,其实执行notify,也就是 等待
和 叫醒
操作。
「源码」:jdk8u_hotspot/blob/master/src/share/vm/runtime/thread.cpp
void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
// Notify waiters on thread object. This has to be done after exit() is called
// on the thread (if the thread is the last thread in a daemon ThreadGroup the
// group should have the destroyed bit set before waiters are notified).
ensure_join(this);
}
static void ensure_join(JavaThread* thread) {
// 叫醒
java_lang_Thread::set_thread(threadObj(), NULL);
lock.notify_all(thread);
}
好的,就是这里!lock.notify_all(thread)
,执行到这,就对上了。
「案例代码」
Thread thread = new Thread(() -> {
System.out.println("thread before");
try {
Thread.sleep(3000);
} catch (Exception e) {
e.printStackTrace();
}
System.out.println("thread after");
});
thread.start();
System.out.println("main begin!");
thread.join();
System.out.println("main end!");
「测试结果」
main begin!
thread before
thread after
main end!
Process finished with exit code 0
首先join() 是一个synchronized方法, 里面调用了wait(),这个过程的目的是让持有这个同步锁的线程进入等待,那么谁持有了这个同步锁呢?答案是主线程,因为主线程调用了threadA.join()方法,相当于在threadA.join()代码这块写了一个同步代码块,谁去执行了这段代码呢,是主线程,所以主线程被wait()了。然后在子线程threadA执行完毕之后,JVM会调用lock.notify_all(thread);唤醒持有threadA这个对象锁的线程,也就是主线程,会继续执行。
thread.join()
后,会影响到输出结果。如果不加,
main end!
会优先
thread after
提前打印出来。到此,相信大家对“总结Thread线程,状态转换、方法使用、原理分析”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!