快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Python图像基本操作有哪些

这篇文章主要介绍“Python图像基本操作有哪些”,在日常操作中,相信很多人在Python图像基本操作有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python图像基本操作有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

创新互联从2013年创立,先为正阳等服务建站,正阳等地企业,进行企业商务咨询服务。为正阳企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

libtiff 包装器
from libtiff import TIFF

tif = TIFF.open('filename.tif', mode='r')    #打开tiff文件进行读取
image = tif.read_image()                     #读取图像并作为numpy数组返回

for image in tif.iter_images()               #读取TIFF文件中的所有图像

tif = TIFF.open('filename.tif', mode='w')    #打开tiff文件进行写入
tif.write_image(image)                       #将图像写入tiff文件
Python 模块
from libtiff import TIFFfile, TIFFimage

tif = TIFFfile('filename.tif')              #读取图片
samples, sample_names = tiff.get_samples()
tiff = TIFFimage(data, description='')

tiff.write_file('filename.tif', compression='none') # or 'lzw'
del tiff                                            # 刷新(释放缓存)
opencv 模块
import cv2
cv2.imread("filename",flags)

=====================其中:flags四种选择如下:==================
IMREAD_UNCHANGED = -1 #不进行转化,比如保存为了16位的图片,读取出来仍然为16位。
IMREAD_GRAYSCALE = 0 #转化为灰度图,比如保存为了16位的图片,读取出来为8位,类型为CV_8UC1。
IMREAD_COLOR = 1     #进行转化为RGB三通道图像,图像深度转为8位
IMREAD_ANYDEPTH = 2  #保持图像深度不变,进行转化为灰度图。
IMREAD_ANYCOLOR = 4  #若通道数小于等于3,则保持不变;若通道数大于3则只取取前三个通道。图像深度转为8位

对于多通道TIFF图像,若要保证图像数据的正常读取,显然要选择IMREAD_UNCHANGED
PIL 模块
from PIL import Image
img0 = Image.open("D:/python_script/ffff/11lalala.jpg")
img1 = Image.open("D:/python_script/ffff/42608122.tif")
img2 = Image.open("D:/python_script/ffff/42608122_1.jpg")  #这张图片是直接修改上张图的后缀名

print ("图片格式:{0},图片大小:{1},图片模式:{2}".format(img0.format,img0.size,img0.mode))
print ("图片格式:{0},图片大小:{1},图片模式:{2}".format(img1.format,img1.size,img1.mode))
print ("图片格式:{0},图片大小:{1},图片模式:{2}".format(img2.format,img2.size,img2.mode))

输出:#说明直接修改图片后缀名,图片的编码格式并没有改变
图片格式:JPEG,图片大小:(245, 213),图片模式:RGB
图片格式:TIFF,图片大小:(2480, 3508),图片模式:YCbCr
图片格式:TIFF,图片大小:(2480, 3508),图片模式:YCbCr
直接修改图片格式
import PIL.Image
import os

def convert(input_dir,output_dir):
    for filename in os.listdir(input_dir):
        path = input_dir+"/"+filename
        print("doing... ",path)
        PIL.Image.open(path).save(output_dir+"/"+filename[:-4]+".jpg")
        print ("%s has been changed!"%filename)

if __name__ == '__main__':
   input_dir = "D:/classifier_data20181225/img1" 
   output_dir = "D:/classifier_data20181225/img2"
   convert(input_dir,output_dir)
大(分辨率大)图片缩小

遇到分辨率大,图片文件大小并不大的文件,opencv打不开,此时用到了以下代码用来缩小图片。

  • 若文件宽大于1200,(高度小于1800)以此宽度等比缩放

  • 若文件高大于1800,(宽度小于1200)以此高度等比缩放

import os
from PIL import Image
import shutil

def get_img(input_dir):
    img_path_list = []
    for (root_path,dirname,filenames) in os.walk(input_dir):
        for filename in filenames:
            img_path = root_path+"/"+filename
            img_path_list.append(img_path)
    print("img_path_list",img_path_list)
    return  img_path_list

def process_image(filename,output_dir, mwidth=1200, mheight=1800):
    image = Image.open(filename)
    w, h = image.size
    if w <= mwidth and h <= mheight:
        print(filename, 'is OK.')
        shutil.move(filename, output_dir+filename[-15:])
        return
    if (1.0 * w / mwidth) > (1.0 * h / mheight):
        scale = 1.0 * w / mwidth
        new_im = image.resize((int(w / scale), int(h / scale)), Image.ANTIALIAS)

    else:
        scale = 1.0 * h / mheight
        new_im = image.resize((int(w / scale), int(h / scale)), Image.ANTIALIAS)
    new_im.save(output_dir+filename[-15:])
    new_im.close()

if __name__ == '__main__':
    input_dir = "D:/classifier_data20181212/lipei_resize_1"
    output_dir = "D:/classifier_data20181212/lipei_resize/"
    img_path_list = get_img(input_dir)
    for filename in img_path_list:
        print("filename",filename)
        process_image(filename,output_dir)

到此,关于“Python图像基本操作有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


新闻标题:Python图像基本操作有哪些
当前地址:http://6mz.cn/article/iejgdg.html

其他资讯