十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
本节课内容:
创新互联建站是一家集网站建设,青冈企业网站建设,青冈品牌网站建设,网站定制,青冈网站建设报价,网络营销,网络优化,青冈网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
1、基础排序算法实战
2、二次排序算法实战
3、更高级别排序算法
4、排序算法内幕解密
排序在Spark运用程序中使用的比较多,且维度也不一样,如二次排序,三次排序等,在机器学习算法中经常碰到,所以非常重要,必须掌握!
所谓二次排序,就是根据两列值进行排序,如下测试数据:
2 3
4 1
3 2
4 3
8 7
2 1
经过二次排序后的结果(升序):
2 1
2 3
3 2
4 1
4 3
8 7
在编写二次排序代码前,先简单的写下单个key排序的代码:
val conf = new SparkConf().setAppName("SortByKey").setMaster("local")
val sc = new SparkContext(conf)
val lines = sc.textFile("C:\\User\\Test.txt")
valwords = lines.flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _)val wordcount = words.map(word=>(word._2,word._1)).sortByKey(false).map(word=>(word._2,word._1))
wordcount.collect().foreach(println)
以上就是简单的wordcount程序,程序中使用了sortByKey排序
下面我们通过代码实现二次排序算法
首先我们先通过Java代码实现上面测试数据进行二次排序
排序最主要的就是Key的准备,我们先用Java编写二次排序的key,参考代码如下:
import java.io.Serializable;
import scala.math.Ordered;
public class SecondarySortKey implements Ordered
private int first;
private int second;
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + first;
result = prime * result + second;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
SecondarySortKey other = (SecondarySortKey) obj;
if (first != other.first)
return false;
if (second != other.second)
return false;
return true;
}
public int getFirst() {
return first;
}
public void setFirst(int first) {
this.first = first;
}
public int getSecond() {
return second;
}
public void setSecond(int second) {
this.second = second;
}
public SecondarySortKey(int first, int second) {
this.first = first;
this.second = second;
}
public boolean $greater(SecondarySortKey other) {
if (this.first > other.getFirst()) {
return true;
} else if (this.first == other.getFirst() && this.second > other.getSecond()) {
return true;
}
return false;
}
public boolean $greater$eq(SecondarySortKey other) {
if (this.$greater(other)) {
return true;
} else if (this.first == other.getFirst() && this.second == other.getSecond()) {
return true;
}
return false;
}
public boolean $less(SecondarySortKey other) {
if (this.first < other.getFirst()) {
return true;
} else if (this.first == other.getFirst() && this.second < other.getSecond()) {
return true;
}
return false;
}
public boolean $less$eq(SecondarySortKey other) {
if (this.$less(other)) {
return true;
} else if (this.first == other.getFirst() && this.second < other.getSecond()) {
return true;
}
return false;
}
public int compare(SecondarySortKey other) {
if (this.first - other.getFirst() != 0) {
return this.first - other.getFirst();
} else {
return this.second - other.getSecond();
}
}
public int compareTo(SecondarySortKey other) {
if (this.first - other.getFirst() != 0) {
return this.first - other.getFirst();
} else {
return this.second - other.getSecond();
}
}
根据上面生成的排序key编写对测试数据的二次排序
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/**
* DT_Spark大数据梦工厂
* 二次排序,具体的实现步骤:
* 第一步:按照Ordered和Serializable接口实现自定义排序的key
* 第二步:将要进行二次排序的文件加载进来生成
* 第三步:使用sortByKey基于自定义的Key进行二次排序
* 第四步:去除掉排序的Key,只保留排序的结果
*/
public class SecondarySortKeyApp {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("SecondarySortKeyApp").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD
//将自定义的key添加进来
JavaPairRDD
.mapToPair(new PairFunction
private static final long serialVersionUID = 1L;
public Tuple2
String[] splited = line.split(" ");
SecondarySortKey key = new SecondarySortKey(Integer.valueOf(splited[0]),
Integer.valueOf(splited[1]));
return new Tuple2
}
});
//根据我们自定义的key进行升序排序
JavaPairRDD
// 过滤掉排序后的自定义的Key,保留排序的结果
JavaRDD
public String call(Tuple2
return sortedContent._2;
}
});
secondarySort.foreach(new VoidFunction
public void call(String sorted) throws Exception {
System.out.println(sorted);
}
});
}
运行结果:
2 1
2 3
3 2
4 1
4 3
8 7
下面我通过Scala方式实现上述二次排序,scala代码非常简洁
先创建我们自定义排序key
/***DT_Spark大数据梦工厂
* 自定义二次排序的key
*/
class SecondarySortKey(val first: Int, val second: Int) extends Ordered[SecondarySortKey] with Serializable {
def compare(other: SecondarySortKey): Int = {
if (this.first - other.first != 0) {
this.first - other.first
}
else {
this.second - other.second
}
}
根据自定义排序Key实现二次排序
import org.apache.spark.{SparkConf, SparkContext}
/**SecondarySortKeyApp {
def main(args: Array[String]) {//过滤掉key,只保留value
val sortedResult = sorted.map(sort => sort._2)
//显示结果
sortedResult.collect().foreach(println)
}
}
运行结果:
2 1
2 3
3 2
4 1
4 3
8 7
从上面的代码可以看出,通过scala代码实现二次排序确实非常简洁,这也是scala的强大之处所在。
更高级别排序算法和内幕解密在后续课程中在分享。
备注:
资料来源于:DT_大数据梦工厂
更多私密内容,请关注微信公众号:DT_Spark
如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580