十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
你好
网页设计是网站建设的前奏,好的网页设计更深度的剖析产品和设计风格定位,结合最新的网页设计流行趋势,与WVI应用标准,设计出具企业表现力,大器而深稳的网站界面设。创新互联建站从2013年开始,是成都网站建设公司:提供企业网站设计,品牌网站设计,营销型企业网站建设方案,响应式网站建设,微信小程序定制开发,专业建站公司做网站。
修改表的数据一般使用update语句
具体的话参考相关SQL文档吧
不是几句话能说明白的
祝你好运
望采纳
非root用户运行MySQL,当MySQL配置比较高时,MySQL运行中生效的参数值与配置的值不一样,所以具体分析一下MySQL是怎么调整这些参数值的。
这篇文章的目的是为了说明在系统资源不够的情况下,MySQL 是怎么调整者三个参数的。说明此文涉及到三个参数open_files_limit、 max_connections、 table_open_cache。与这三个参数相关的系统资源是打开文件数限制,即文件描述符(fd)限制。系统参数与文件描述符的关系 - max_connection fd : 每一个MySQL connection 都需要一个文件描述符;
- table_open_cache fd 打开一张表至少需要一个 文件描述符,如打开MyISAM需要两个fd ;
- 系统最大打开文件数可以通过 ulimit -n查看。MySQL调整参数的方式
根据配置(三个参数的配置值或默认值)计算 request_open_files(需要的文件描述符);
2.获取有效的系统的限制值effective_open_files; 3.根据effective_open_files调整request_open_files; 4.根据调整后的request_open_files,计算实际生效的参数值(show variables 可查看参数值)。计算request_open_filesrequest_open_files有三个计算公式:1. // 最大连接数+同时打开的表的最大数量+其他(各种日志等等)2. limit_1= max_connections+table_cache_size * 2 + 10;3. 4. //假设平均每个连接打开的表的数量(2-4)5. //源码中是这么写的:6. //We are trying to allocate no less than 7. // max_connections*5 file handles8. limit_2= max_connections * 5;9. 10. //mysql 默认的默认是500011. limit_3= open_files_limit ? open_files_limit : 5000;12. 13. 所以open_files_limit期待的最低14. request_open_files= max(limit_1,limit_2,limit_3);计算effective_open_files:MySQL 的思路:
在有限值的的范围内MySQL 尽量将effective_open_files的值设大。
修正request_open_files
requested_open_files= min(effective_open_files, request_open_files)
重新计算参数值
修正open_files_limit
open_files_limit = effective_open_files
修正max_connections
max_connections 根据 request_open_files 来做修正。1. limit = requested_open_files - 10 - TABLE_OPEN_CACHE_MIN * 2;
如果配置的max_connections值大于limit,则将max_connections 的值修正为limit
其他情况下 max_connections 保留配置值
修正table_cache_size
table_cache_size 会根据 request_open_files 来做修正1. // mysql table_cache_size 最小值,4002. limit1 = TABLE_OPEN_CACHE_MIN3. // 根据 requested_open_files 计算4. limit2 = (requested_open_files - 10 - max_connections) / 25. limit = max(limit1,limt2);
如果配置的table_cache_size 值大于limit,则将 table_cache_size 的值修正为limit
其他情况下table_cache_size 保留配置值
举例
以下用例在非 root 用户下运行
参数设置:
//mysql
max_connections = 500
table_open_cache = 999
//ulimit -n
1500
生效的值:
open_files_limit = 1500 max_connections = min[(1500 - 10 - 800),500] = 500
table_open_cache = ( 1500 - 10 - 500) / 2 =495
MySQL 的 Binlog 记录着 MySQL 数据库的所有变更信息,了解 Binlog 的结构可以帮助我们解析Binlog,甚至对 Binlog 进行一些修改,或者说是“篡改”,例如实现类似于 Oracle 的 flashback 的功能,恢复误删除的记录,把 update 的记录再还原回去等。本文将带您探讨一下这些神奇功能的实现,您会发现比您想象地要简单得多。本文指的 Binlog 是 ROW 模式的 Binlog,这也是 MySQL 8 里的默认模式,STATEMENT 模式因为使用中有很多限制,现在用得越来越少了。
Binlog 由事件(event)组成,请注意是事件(event)不是事务(transaction),一个事务可以包含多个事件。事件描述对数据库的修改内容。
现在我们已经了解了 Binlog 的结构,我们可以试着修改 Binlog 里的数据。例如前面举例的 Binlog 删除了一条记录,我们可以试着把这条记录恢复,Binlog 里面有个删除行(DELETE_ROWS_EVENT)的事件,就是这个事件删除了记录,这个事件和写行(WRITE_ROWS_EVENT)的事件的数据结构是完全一样的,只是删除行事件的类型是 32,写行事件的类型是 30,我们把对应的 Binlog 位置的 32 改成 30 即可把已经删除的记录再插入回去。从前面的 “show binlog events” 里面可看到这个 DELETE_ROWS_EVENT 是从位置 378 开始的,这里的位置就是 Binlog 文件的实际位置(以字节为单位)。从事件(event)的结构里面可以看到 type_code 是在 event 的第 5 个字节,我们写个 Python 小程序把把第383(378+5=383)字节改成 30 即可。当然您也可以用二进制编辑工具来改。
找出 Binlog 中的大事务
由于 ROW 模式的 Binlog 是每一个变更都记录一条日志,因此一个简单的 SQL,在 Binlog 里可能会产生一个巨无霸的事务,例如一个不带 where 的 update 或 delete 语句,修改了全表里面的所有记录,每条记录都在 Binlog 里面记录一次,结果是一个巨大的事务记录。这样的大事务经常是产生麻烦的根源。我的一个客户有一次向我抱怨,一个 Binlog 前滚,滚了两天也没有动静,我把那个 Binlog 解析了一下,发现里面有个事务产生了 1.4G 的记录,修改了 66 万条记录!下面是一个简单的找出 Binlog 中大事务的 Python 小程序,我们知道用 mysqlbinlog 解析的 Binlog,每个事务都是以 BEGIN 开头,以 COMMIT 结束。我们找出 BENGIN 前面的 “# at” 的位置,检查 COMMIT 后面的 “# at” 位置,这两个位置相减即可计算出这个事务的大小,下面是这个 Python 程序的例子。
切割 Binlog 中的大事务
对于大的事务,MySQL 会把它分解成多个事件(注意一个是事务 TRANSACTION,另一个是事件 EVENT),事件的大小由参数 binlog-row-event-max-size 决定,这个参数默认是 8K。因此我们可以把若干个事件切割成一个单独的略小的事务
ROW 模式下,即使我们只更新了一条记录的其中某个字段,也会记录每个字段变更前后的值,这个行为是 binlog_row_image 参数控制的,这个参数有 3 个值,默认为 FULL,也就是记录列的所有修改,即使字段没有发生变更也会记录。这样我们就可以实现类似 Oracle 的 flashback 的功能,我个人估计 MySQL 未来的版本从可能会基于 Binlog 推出这样的功能。
了解了 Binlog 的结构,再加上 Python 这把瑞士军刀,我们还可以实现很多功能,例如我们可以统计哪个表被修改地最多?我们还可以把 Binlog 切割成一段一段的,然后再重组,可以灵活地进行 MySQL 数据库的修改和迁移等工作。
本期我们用 MySQL 提供的 DBUG 工具来研究 MySQL 的 SQL 处理流程。
起手先造个实例
这里得稍微改一下实例的启动文件 start,将 CUSTOM_MYSQLD 改为 mysqld-debug:
重启一下实例,加上 debug 参数:
我们来做一两个实验,说明 DBUG 包的作用:
先设置一个简单的调试规则,我们设置了两个调试选项:
d:开启各个调试点的输出
O,/tmp/mysqld.trace:将调试结果输出到指定文件
请点击输入图片描述
然后我们创建了一张表,来看一下调试的输出结果:
请点击输入图片描述
可以看到 create table 的过程中,MySQL 的一些细节操作,比如分配内存 alloc_root 等
这样看还不够直观,我们增加一些信息:
请点击输入图片描述
来看看效果:
请点击输入图片描述
可以看到输出变成了调用树的形式,现在就可以分辨出 alloc_root 分配的内存,是为了解析 SQL 时用的(mysql_parse)
我们再增加一些有用的信息:
请点击输入图片描述
可以看到结果中增加了文件名和行号:
请点击输入图片描述
现在我们可以在输出中找一下统计表相关的信息:
请点击输入图片描述
可以看到 MySQL 在这里非常机智,直接执行了一个内置的存储过程来更新统计表。
沿着 que_eval_sql,可以找到其他类似的统计表,比如下面这些:
请点击输入图片描述
请点击输入图片描述
本次实验中,我们借助了 MySQL 的 DBUG 包,来让 MySQL 将处理过程暴露出来。MySQL 中类似的技术还有不少,比如 performance_schema,OPTIMIZER_TRACE 等等。
这些技术将 MySQL 的不同方向的信息暴露出来,方便大家理解其中机制。
对mysql数据表中的某个字段的所有数据修改,可以使用update语句,语法是:
update table_name set column = value[, colunm = value...] [where condition];
[ ]中的部分表示可以有也可以没有。
例如:
update students set stu_name = "zhangsan", stu_gender = "m" where stu_id = 5;
扩展资料:
SQL修改字段属性总结:
1、修改表中字段类型 可以修改列的类型,是否为空)
Alter table [表名] alter column [列名] 类型
2、向表中添加字段
Alter table [表名] add [列名] 类型
3、删除字段
Alter table [表名] drop column [列名]
4、添加主键
Alter table [表名] add constraint [ 约束名] primary key( [列名])
5、添加唯一约束
Alter table [表名] add constraint [ 约束名] unique([列名])
6、添加表中某列的默认值
Alter table [表名] add constraint [约束名] default(默认值) for [列名]