十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
python中len()的用法:
牧野网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、自适应网站建设等网站项目制作,到程序开发,运营维护。创新互联从2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。
新建一个len()函数的使用py,中文编码声明注释:#coding=gbk,函数:len()作用:返回字符串、列表、字典、元组等长度。语法:len(str)。参数:str:要计算的字符串、列表、字典、元组等。返回值:字符串、列表、字典、元组等元素的长度。
实例:
1、计算字符串的长度。
2、计算列表的元素个数。
3、计算字典的总长度,即键值对总数。
4、计算元组元素个数。
在Python中,要知道一个字符串有多少个字符,以获得字符串的长度,或者一个字符串需要多少字节,可以使用len函数。
import math
a = abs
print(a(-1))
n1 = 255
print(str(hex(n1)))
def my_abs(x):
# 增加了参数的检查
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x = 0:
return x
else:
return -x
print(my_abs(-3))
def nop():
pass
if n1 = 255:
pass
def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny
x, y = move(100, 100, 60, math.pi / 6)
print(x, y)
tup = move(100, 100, 60, math.pi / 6)
print(tup)
print(isinstance(tup, tuple))
def quadratic(a, b, c):
k = b * b - 4 * a * c
# print(k)
# print(math.sqrt(k))
if k 0:
print('This is no result!')
return None
elif k == 0:
x1 = -(b / 2 * a)
x2 = x1
return x1, x2
else:
x1 = (-b + math.sqrt(k)) / (2 * a)
x2 = (-b - math.sqrt(k)) / (2 * a)
return x1, x2
print(quadratic(2, 3, 1))
def power(x, n=2):
s = 1
while n 0:
n = n - 1
s = s * x
return s
print(power(2))
print(power(2, 3))
def enroll(name, gender, age=8, city='BeiJing'):
print('name:', name)
print('gender:', gender)
print('age:', age)
print('city:', city)
enroll('elder', 'F')
enroll('android', 'B', 9)
enroll('pythone', '6', city='AnShan')
def add_end(L=[]):
L.append('end')
return L
print(add_end())
print(add_end())
print(add_end())
def add_end_none(L=None):
if L is None:
L = []
L.append('END')
return L
print(add_end_none())
print(add_end_none())
print(add_end_none())
def calc(*nums):
sum = 0
for n in nums:
sum = sum + n * n
return sum
print(calc(1, 2, 3))
print(calc())
l = [1, 2, 3, 4]
print(calc(*l))
def foo(x, y):
print('x is %s' % x)
print('y is %s' % y)
foo(1, 2)
foo(y=1, x=2)
def person(name, age, **kv):
print('name:', name, 'age:', age, 'other:', kv)
person('Elder', '8')
person('Android', '9', city='BeiJing', Edu='人民大学')
extra = {'city': 'Beijing', 'job': 'Engineer'}
person('Jack', 24, **extra)
def person2(name, age, *, city, job):
print(name, age, city, job)
person2('Pthon', 8, city='BeiJing', job='Android Engineer')
def person3(name, age, *other, city='BeiJing', job='Android Engineer'):
print(name, age, other, city, job)
person3('Php', 18, 'test', 1, 2, 3)
person3('Php2', 28, 'test', 1, 2, 3, city='ShangHai', job='Pyhton Engineer')
def test2(a, b, c=0, *args, key=None, **kw):
print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'key=', key, 'kw =', kw)
test2(1, 2, 3, 'a', 'b', 'c', key='key', other='extra')
args = (1, 2, 3, 4)
kw = {'d': 99, 'x': '#'}
test2(*args, **kw)
正则表达式是一个特殊的字符序列,用于简洁表达一组字符串特征,检查一个字符串是否与某种模式匹配,使用起来十分方便。
在Python中,我们通过调用re库来使用re模块:
import re
下面介绍Python常用的正则表达式处理函数。
re.match函数
re.match 函数从字符串的起始位置匹配正则表达式,返回match对象,如果不是起始位置匹配成功的话,match()就返回None。
re.match(pattern, string, flags=0)
pattern:匹配的正则表达式。
string:待匹配的字符串。
flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。具体参数为:
re.I:忽略大小写。
re.L:表示特殊字符集 \w, \W, \b, \B, \s, \S 依赖于当前环境。
re.M:多行模式。
re.S:即 . ,并且包括换行符在内的任意字符(. 不包括换行符)。
re.U:表示特殊字符集 \w, \W, \b, \B, \d, \D, \s, \S 依赖于 Unicode 字符属性数据库。
re.X:为了增加可读性,忽略空格和 # 后面的注释。
import re #从起始位置匹配 r1=re.match('abc','abcdefghi') print(r1) #不从起始位置匹配 r2=re.match('def','abcdefghi') print(r2)
运行结果:
其中,span表示匹配成功的整个子串的索引。
使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。
group(num):匹配的整个表达式的字符串,group() 可以一次输入多个组号,这时它将返回一个包含那些组所对应值的元组。
groups():返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。
import re s='This is a demo' r1=re.match(r'(.*) is (.*)',s) r2=re.match(r'(.*) is (.*?)',s) print(r1.group()) print(r1.group(1)) print(r1.group(2)) print(r1.groups()) print() print(r2.group()) print(r2.group(1)) print(r2.group(2)) print(r2.groups())
运行结果:
上述代码中的(.*)和(.*?)表示正则表达式的贪婪匹配与非贪婪匹配。
re.search函数
re.search函数扫描整个字符串并返回第一个成功的匹配,如果匹配成功则返回match对象,否则返回None。
re.search(pattern, string, flags=0)
pattern:匹配的正则表达式。
string:待匹配的字符串。
flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。
import re #从起始位置匹配 r1=re.search('abc','abcdefghi') print(r1) #不从起始位置匹配 r2=re.search('def','abcdefghi') print(r2)
运行结果:
使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。
group(num=0):匹配的整个表达式的字符串,group() 可以一次输入多个组号,这时它将返回一个包含那些组所对应值的元组。
groups():返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。
import re s='This is a demo' r1=re.search(r'(.*) is (.*)',s) r2=re.search(r'(.*) is (.*?)',s) print(r1.group()) print(r1.group(1)) print(r1.group(2)) print(r1.groups()) print() print(r2.group()) print(r2.group(1)) print(r2.group(2)) print(r2.groups())
运行结果:
从上面不难发现re.match与re.search的区别:re.match只匹配字符串的起始位置,只要起始位置不符合正则表达式就匹配失败,而re.search是匹配整个字符串,直到找到一个匹配为止。
re.compile 函数
compile 函数用于编译正则表达式,生成一个正则表达式对象,供 match() 和 search() 这两个函数使用。
re.compile(pattern[, flags])
pattern:一个字符串形式的正则表达式。
flags:可选,表示匹配模式,比如忽略大小写,多行模式等。
import re #匹配数字 r=re.compile(r'\d+') r1=r.match('This is a demo') r2=r.match('This is 111 and That is 222',0,27) r3=r.match('This is 111 and That is 222',8,27) print(r1) print(r2) print(r3)
运行结果:
findall函数
搜索字符串,以列表形式返回正则表达式匹配的所有子串,如果没有找到匹配的,则返回空列表。
需要注意的是,match 和 search 是匹配一次,而findall 匹配所有。
findall(string[, pos[, endpos]])
string:待匹配的字符串。
pos:可选参数,指定字符串的起始位置,默认为0。
endpos:可选参数,指定字符串的结束位置,默认为字符串的长度。
import re #匹配数字 r=re.compile(r'\d+') r1=r.findall('This is a demo') r2=r.findall('This is 111 and That is 222',0,11) r3=r.findall('This is 111 and That is 222',0,27) print(r1) print(r2) print(r3)
运行结果:
re.finditer函数
和 findall 类似,在字符串中找到正则表达式所匹配的所有子串,并把它们作为一个迭代器返回。
re.finditer(pattern, string, flags=0)
pattern:匹配的正则表达式。
string:待匹配的字符串。
flags:标志位,用于控制正则表达式的匹配方式,如是否区分大小写,多行匹配等。
import re r=re.finditer(r'\d+','This is 111 and That is 222') for i in r: print (i.group())
运行结果:
re.split函数
将一个字符串按照正则表达式匹配的子串进行分割后,以列表形式返回。
re.split(pattern, string[, maxsplit=0, flags=0])
pattern:匹配的正则表达式。
string:待匹配的字符串。
maxsplit:分割次数,maxsplit=1分割一次,默认为0,不限次数。
flags:标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等。
import re r1=re.split('\W+','This is 111 and That is 222') r2=re.split('\W+','This is 111 and That is 222',maxsplit=1) r3=re.split('\d+','This is 111 and That is 222') r4=re.split('\d+','This is 111 and That is 222',maxsplit=1) print(r1) print(r2) print(r3) print(r4)
运行结果:
re.sub函数
re.sub函数用于替换字符串中的匹配项。
re.sub(pattern, repl, string, count=0, flags=0)
pattern:正则中的模式字符串。
repl:替换的字符串,也可为一个函数。
string:要被查找替换的原始字符串。
count:模式匹配后替换的最大次数,默认0表示替换所有的匹配。
import re r='This is 111 and That is 222' # 删除字符串中的数字 r1=re.sub(r'\d+','',r) print(r1) # 删除非数字的字符串 r2=re.sub(r'\D','',r) print(r2)
运行结果:
到此这篇关于Python常用的正则表达式处理函数详解的文章就介绍到这了,希望大家以后多多支持!
在写python程序时,常能用到一些函数和方法,总结一下,保存起来,方便查询。
一、内置函数
# abs()获取数字绝对值
# chr(i)数字转换为字符类型
# divmod() 获取两个数值的商和余数
# enumerate() 将可遍历序列组合为索引序列
# float()转换为浮点数
# format() 格式化字符串
# int()转换为整数
# input() 接受用户输入内容
# len() 计算元素个数
# max() 返回最大值
# min() 返回最小值
# math.ceil() 返回指定数值的上舍整数
# open()打开文件并返回文件对象
# pow() 幂运算
# print()打印输出
# range() 生成器
# reversed()反转所有元素
# round()四舍五入求值
# sorted()对可迭代对象进行排序
# str() 转换为字符串
# sum() 求和
# set() 创建集合
# tuple() 将序列转换为元组
# zip()将可迭代对象打包成元组
二、方法
# append() 添加列表元素
# capitalize()首字母转换为大写
# count()字符出现次数
# close() 关闭文件
# decode() 解码字符串
# dict.keys() 获取字典所有的键
# find()字符串首次出现的索引
# f.read() 读取文件内容
# dict.update()更新字典
# dict.items() 获取字典键/值对
# dict.get() 返回指定键的值
# encode() 编码字符串
# list.sort() 排序列表元素
# index() 元素首次出现的索引
# isdigit() 判断字符串是否只由数字组成
# isupper() 是否所有字母都为大写
# isnum() 判断字符串是否由字母和数字组成
# islower() 是否所有字母都为小写
# isdecimal() 检查字符串是否只包含十进制字符
# isalpha() 检测字符串是否为纯字母
# random.shuffle()随机排序
# random.sample()返回无重复随机数列表
# random.choice() 返回一个随机元素
# random.randint() 生成指定范围的随机整数
# random.randrange() 生成指定范围的指定递增基数随机整数
# pop() 删除列表中的元素
# remove()删除列表中的指定元素
# strip()去除空格
# lstrip()去除左侧空格
# rstrip() 去除右侧空格
# readline() 读取单行内容
# root.after() Tkinter中等待一段时间后再执行命令
# str.isnumeric() 验证字符串是否为数字(适用于Unicode)
# split()分割字符串
# ord() 将字符转换为整数
# replace() 字符串替换
# ljust() 左对齐填充
# rjust() 左对齐填充
# readlines() 读取所有行内容
# datetime.datetime.now() 返回指定时区的本地日期时间
# datetime.datetime.today() 获取当前本地日期的date对象
# datetime.utcnow() 返回当前UTC时间的datetime对象
# time.strptime()把时间字符串解析为元组
# time.time()返回当前时间的时间戳
# time.sleep()暂停指定秒数
# time.strftime() 返回指定格式的日期字符串
# time.mktime() 接收时间元组并返回时间戳
# os.getcwd() 获取当前工作目录
# os.listdir() 获取指定路径下的目录和文件列表
# os.makedirs() 递归创建目录
# os.rename() 重命名目录或文件
# os.path.exists() 判断路径是否存在
# upper() 全部转换为大写字母
# lower() 全部转换为小写字母
# sys.stdout.write() 标准输出打印
# sys.stdout.flush()刷新输出
# shutil.copy() 复制单个文件到另一文件或目录
# write() 写入文件内容
# winsound.Beep() 打开电脑扬声器
# zfill() 在字符串前面填充0
三、循环语句
# break终止当前循环
# continue 终止本循环进入下一次循环
# with open() as file 以with语句打开文件(数据保存)
四、转义字符
\ 行尾续行符
\' 单引号
\'' 双引号
\a 响铃
\e 转义
\n 换行
\t 横向制表符
\f 换页
\xyy 十六进制yy代表的字符
\\反斜杠符号
\b 退格
\000 空
\v 纵向制表符
\r 回车
\0yy 八进制yy代表的字符
\other 其他的字符以普通格式输出
1、函数的分类:
内置函数:python内嵌的一些函数。
匿名函数:一行代码实现一个函数功能。
递归函数
自定义函数:根据自己的需求,来进行定义函数。
2、方法的分类:
普通方法:直接用self调用的方法。
私有方法:__函数名,只能在类中被调用的方法。
属性方法:@property,将方法伪装成为属性,让代码看起来更合理。
特殊方法(双下划线方法):以__init__为例,是用来封装实例化对象的属性,只要是实例化对象就一定会执行__init方法,如果对象子类中没有则会寻找父类(超类),如果父类(超类)也没有,则直接继承object(python 3.x)类,执行类中的__init__方法。类方法:通过类名的调用去操作公共模板中的属性和方法。
静态方法:不用传入类空间、对象的方法, 作用是保证代码的一致性,规范性,可以完全独立类外的一个方法,但是为了代码的一致性统一的放到某个模块(py文件)中。
其次,从作用域的角度来分析:
(1)函数作用域:从函数调用开始至函数执行完成,返回给调用者后,在执行过程中开辟的空间会自动释放,也就是说函数执行完成后,函数体内部通过赋值等方式修改变量的值不会保留,会随着返回给调用者后,开辟的空间会自动释放。
(2)方法作用域:通过实例化的对象进行方法的调用,调用后开辟的空间不会释放,也就是说调用方法中对变量的修改值会一直保留。
最后,调用的方式不同。
(1)函数:通过“函数名()”的方式进行调用。
(2)方法:通过“对象.方法名”的方式进行调用。