十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
统计在字符串、列表、元组中某个字符出现的次数,可以设置起始位置或结束位置。
专注于为中小企业提供成都网站建设、网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业新昌免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上千余家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
sub -- 搜索的子字符串。start -- 字符串开始搜索的位置。默认为第一个字符,第一个字符索引值为0。end -- 字符串中结束搜索的位置。字符中第一个字符的索引为 0。默认为字符串的最后一个位置。
python的应用
Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。
在国内,豆瓣一开始就使用Python作为web开发基础语言,知乎的整个架构也是基于Python语言,这使得web开发这块在国内发展的很不错。 youtube 世界最大的视频网站也是Python开发的哦.还有非常出名的instagram 也是用python开发的。
现在的人工智能非常的火爆,各种培训班都在疯狂打广告招生。机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
Python count()方法用于统计字符串里某个字符或子字符串出现的次数,可选参数为在字符串搜索的开始与结束位置。
语法
count()方法语法:
str.count(sub, start= 0,end=len(string))
参数
sub -- 搜索的子字符串
start -- 字符串开始搜索的位置,默认为第一个字符,第一个字符索引值为0
end -- 字符串中结束搜索的位置,字符中第一个字符的索引为0,默认为字符串的最后一个位置。
返回值
该方法返回子字符串在字符串中出现的次数。
value_counts是一种查看表格某列中有多少个不同值的快捷方法,并计算每个不同值有在该列中个数,类似Excel里面的count函数
其是pandas下面的顶层函数,也可以作用在Series、DataFrame下
常规用法:
pandas 的 value_counts() 函数可以对Series里面的每个值进行计数 并且 排序,默认是降序
可以看出,既可以对分类变量统计,也可以对连续数值变量统计
如果是要对结果升序排列,可以添加 ascending=True 来改变
如果不想看统计的个数,而是想看占比,那么可以设置 normalize=True 即可,结果是小数形式
可以通过apply,对每一列变量进行统计
以上是自己实践中遇到的一些点,分享出来供大家参考学习,欢迎关注DataShare公众号
df.drop_duplicates('item_name')
方法一:
df.drop_duplicates('item_name').count()
方法二:
df['item_name'].nunique()
结果:50
附:nunique()和unique()的区别:
unique()是以 数组形式(numpy.ndarray)返回列的所有唯一值(特征的所有唯一值)
nunique()即返回的是唯一值的个数
比如:df['item_name'].unique()
要求:将下表中经验列将按周统计的转换为经验不限,保留学历
df1['经验'] = df1['经验'].apply(lambda x: '经验不限'+ x[-2:] if '周' in x else x)
#解释:将‘5天/周6个月’变成‘经验不限’,然后保留学历‘本科’
方法二:定义函数
def dataInterval(ss):
if '周' in ss:
return '经验不限'+ ss[-2:]
return ss
df1['经验'] = df1['经验'].apply(dataInterval)
python怎么统计个数:
1、打开一个python文件。
2、然后定义一个序列numbers3。
3、想要统计numbers3序列中4这个元素出现的次数,可以使用count方法来实现,可以这样写:numbers3.count(4)
4、用print函数将统计的结果打印出来。
5、右键单击,弹出菜单,点击runcode运行程序。
6、得出结果为2,表示4个元素在numbers3这个列表中有2个。