快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

关于python函数基础实训的信息

python数据分析与应用-Python数据分析与应用 PDF 内部全资料版

给大家带来的一篇关于Python数据相关的电子书资源,介绍了关于Python方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小281 MB,黄红梅 张良均编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.8。

创新互联服务紧随时代发展步伐,进行技术革新和技术进步,经过十年的发展和积累,已经汇集了一批资深网站策划师、设计师、专业的网站实施团队以及高素质售后服务人员,并且完全形成了一套成熟的业务流程,能够完全依照客户要求对网站进行成都网站建设、成都网站制作、建设、维护、更新和改版,实现客户网站对外宣传展示的首要目的,并为客户企业品牌互联网化提供全面的解决方案。

内容介绍

目录

第1章 Python数据分析概述 1

任务1.1 认识数据分析 1

1.1.1 掌握数据分析的概念 2

1.1.2 掌握数据分析的流程 2

1.1.3 了解数据分析应用场景 4

任务1.2 熟悉Python数据分析的工具 5

1.2.1 了解数据分析常用工具 6

1.2.2 了解Python数据分析的优势 7

1.2.3 了解Python数据分析常用类库 7

任务1.3 安装Python的Anaconda发行版 9

1.3.1 了解Python的Anaconda发行版 9

1.3.2 在Windows系统中安装Anaconda 9

1.3.3 在Linux系统中安装Anaconda 12

任务1.4 掌握Jupyter Notebook常用功能 14

1.4.1 掌握Jupyter Notebook的基本功能 14

1.4.2 掌握Jupyter Notebook的高 级功能 16

小结 19

课后习题 19

第2章 NumPy数值计算基础 21

任务2.1 掌握NumPy数组对象ndarray 21

2.1.1 创建数组对象 21

2.1.2 生成随机数 27

2.1.3 通过索引访问数组 29

2.1.4 变换数组的形态 31

任务2.2 掌握NumPy矩阵与通用函数 34

2.2.1 创建NumPy矩阵 34

2.2.2 掌握ufunc函数 37

任务2.3 利用NumPy进行统计分析 41

2.3.1 读/写文件 41

2.3.2 使用函数进行简单的统计分析 44

2.3.3 任务实现 48

小结 50

实训 50

实训1 创建数组并进行运算 50

实训2 创建一个国际象棋的棋盘 50

课后习题 51

第3章 Matplotlib数据可视化基础 52

任务3.1 掌握绘图基础语法与常用参数 52

3.1.1 掌握pyplot基础语法 53

3.1.2 设置pyplot的动态rc参数 56

任务3.2 分析特征间的关系 59

3.2.1 绘制散点图 59

3.2.2 绘制折线图 62

3.2.3 任务实现 65

任务3.3 分析特征内部数据分布与分散状况 68

3.3.1 绘制直方图 68

3.3.2 绘制饼图 70

3.3.3 绘制箱线图 71

3.3.4 任务实现 73

小结 77

实训 78

实训1 分析1996 2015年人口数据特征间的关系 78

实训2 分析1996 2015年人口数据各个特征的分布与分散状况 78

课后习题 79

第4章 pandas统计分析基础 80

任务4.1 读/写不同数据源的数据 80

4.1.1 读/写数据库数据 80

4.1.2 读/写文本文件 83

4.1.3 读/写Excel文件 87

4.1.4 任务实现 88

任务4.2 掌握DataFrame的常用操作 89

4.2.1 查看DataFrame的常用属性 89

4.2.2 查改增删DataFrame数据 91

4.2.3 描述分析DataFrame数据 101

4.2.4 任务实现 104

任务4.3 转换与处理时间序列数据 107

4.3.1 转换字符串时间为标准时间 107

4.3.2 提取时间序列数据信息 109

4.3.3 加减时间数据 110

4.3.4 任务实现 111

任务4.4 使用分组聚合进行组内计算 113

4.4.1 使用groupby方法拆分数据 114

4.4.2 使用agg方法聚合数据 116

4.4.3 使用apply方法聚合数据 119

4.4.4 使用transform方法聚合数据 121

4.4.5 任务实现 121

任务4.5 创建透视表与交叉表 123

4.5.1 使用pivot_table函数创建透视表 123

4.5.2 使用crosstab函数创建交叉表 127

4.5.3 任务实现 128

小结 130

实训 130

实训1 读取并查看P2P网络贷款数据主表的基本信息 130

实训2 提取用户信息更新表和登录信息表的时间信息 130

实训3 使用分组聚合方法进一步分析用户信息更新表和登录信息表 131

实训4 对用户信息更新表和登录信息表进行长宽表转换 131

课后习题 131

第5章 使用pandas进行数据预处理 133

任务5.1 合并数据 133

5.1.1 堆叠合并数据 133

5.1.2 主键合并数据 136

5.1.3 重叠合并数据 139

5.1.4 任务实现 140

任务5.2 清洗数据 141

5.2.1 检测与处理重复值 141

5.2.2 检测与处理缺失值 146

5.2.3 检测与处理异常值 149

5.2.4 任务实现 152

任务5.3 标准化数据 154

5.3.1 离差标准化数据 154

5.3.2 标准差标准化数据 155

5.3.3 小数定标标准化数据 156

5.3.4 任务实现 157

任务5.4 转换数据 158

5.4.1 哑变量处理类别型数据 158

5.4.2 离散化连续型数据 160

5.4.3 任务实现 162

小结 163

实训 164

实训1 插补用户用电量数据缺失值 164

实训2 合并线损、用电量趋势与线路告警数据 164

实训3 标准化建模专家样本数据 164

课后习题 165

第6章 使用scikit-learn构建模型 167

任务6.1 使用sklearn转换器处理数据 167

6.1.1 加载datasets模块中的数据集 167

6.1.2 将数据集划分为训练集和测试集 170

6.1.3 使用sklearn转换器进行数据预处理与降维 172

6.1.4 任务实现 174

任务6.2 构建并评价聚类模型 176

6.2.1 使用sklearn估计器构建聚类模型 176

6.2.2 评价聚类模型 179

6.2.3 任务实现 182

任务6.3 构建并评价分类模型 183

6.3.1 使用sklearn估计器构建分类模型 183

6.3.2 评价分类模型 186

6.3.3 任务实现 188

任务6.4 构建并评价回归模型 190

6.4.1 使用sklearn估计器构建线性回归模型 190

6.4.2 评价回归模型 193

6.4.3 任务实现 194

小结 196

实训 196

实训1 使用sklearn处理wine和wine_quality数据集 196

实训2 构建基于wine数据集的K-Means聚类模型 196

实训3 构建基于wine数据集的SVM分类模型 197

实训4 构建基于wine_quality数据集的回归模型 197

课后习题 198

第7章 航空公司客户价值分析 199

任务7.1 了解航空公司现状与客户价值分析 199

7.1.1 了解航空公司现状 200

7.1.2 认识客户价值分析 201

7.1.3 熟悉航空客户价值分析的步骤与流程 201

任务7.2 预处理航空客户数据 202

7.2.1 处理数据缺失值与异常值 202

7.2.2 构建航空客户价值分析关键特征 202

7.2.3 标准化LRFMC模型的5个特征 206

7.2.4 任务实现 207

任务7.3 使用K-Means算法进行客户分群 209

7.3.1 了解K-Means聚类算法 209

7.3.2 分析聚类结果 210

7.3.3 模型应用 213

7.3.4 任务实现 214

小结 215

实训 215

实训1 处理信用卡数据异常值 215

实训2 构造信用卡客户风险评价关键特征 217

实训3 构建K-Means聚类模型 218

课后习题 218

第8章 财政收入预测分析 220

任务8.1 了解财政收入预测的背景与方法 220

8.1.1 分析财政收入预测背景 220

8.1.2 了解财政收入预测的方法 222

8.1.3 熟悉财政收入预测的步骤与流程 223

任务8.2 分析财政收入数据特征的相关性 223

8.2.1 了解相关性分析 223

8.2.2 分析计算结果 224

8.2.3 任务实现 225

任务8.3 使用Lasso回归选取财政收入预测的关键特征 225

8.3.1 了解Lasso回归方法 226

8.3.2 分析Lasso回归结果 227

8.3.3 任务实现 227

任务8.4 使用灰色预测和SVR构建财政收入预测模型 228

8.4.1 了解灰色预测算法 228

8.4.2 了解SVR算法 229

8.4.3 分析预测结果 232

8.4.4 任务实现 234

小结 236

实训 236

实训1 求取企业所得税各特征间的相关系数 236

实训2 选取企业所得税预测关键特征 237

实训3 构建企业所得税预测模型 237

课后习题 237

第9章 家用热水器用户行为分析与事件识别 239

任务9.1 了解家用热水器用户行为分析的背景与步骤 239

9.1.1 分析家用热水器行业现状 240

9.1.2 了解热水器采集数据基本情况 240

9.1.3 熟悉家用热水器用户行为分析的步骤与流程 241

任务9.2 预处理热水器用户用水数据 242

9.2.1 删除冗余特征 242

9.2.2 划分用水事件 243

9.2.3 确定单次用水事件时长阈值 244

9.2.4 任务实现 246

任务9.3 构建用水行为特征并筛选用水事件 247

9.3.1 构建用水时长与频率特征 248

9.3.2 构建用水量与波动特征 249

9.3.3 筛选候选洗浴事件 250

9.3.4 任务实现 251

任务9.4 构建行为事件分析的BP神经网络模型 255

9.4.1 了解BP神经网络算法原理 255

9.4.2 构建模型 259

9.4.3 评估模型 260

9.4.4 任务实现 260

小结 263

实训 263

实训1 清洗运营商客户数据 263

实训2 筛选客户运营商数据 264

实训3 构建神经网络预测模型 265

课后习题 265

附录A 267

附录B 270

参考文献 295

学习笔记

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。 定义 (推荐学习:Python视频教程) 用户可以通过电子邮件,Dropbox,GitHub 和 Jupyter Notebook Viewer,将 Jupyter Notebook 分享给其他人。 在Jupyter Notebook 中,代码可以实时的生成图像,视频,LaTeX和JavaScript。 使用 数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。 架构 Jupyter组件 Jupyter包含以下组件: Jupyter Notebook 和 ……

本文实例讲述了Python实现的微信好友数据分析功能。分享给大家供大家参考,具体如下: 这里主要利用python对个人微信好友进行分析并把结果输出到一个html文档当中,主要用到的python包为 itchat , pandas , pyecharts 等 1、安装itchat 微信的python sdk,用来获取个人好友关系。获取的代码 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……

基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiebaimport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……

Python数据分析之双色球基于线性回归算法预测下期中奖结果示例

本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#读取文件d……

以上就是本次介绍的Python数据电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对鬼鬼的支持。

注·获取方式:私信(666)

Python可以实训的项目简单点的有哪些

第一阶段:Python语言及应用

课程内容:Python语言基础,面向对象设计,多线程编程,数据库交互技术,前端特效,Web框架,爬虫框架,网络编程

第二阶段:机器学习与数据分析

课程内容:机器学习概述,监督学习,非监督学习,数据处理,模型调优,数据分析,可视化,项目实战

第三阶段:深度学习

课程内容:深度学习概述,TensorFlow基础及应用,神经网络,多层LSTM,自动编码器,生成对抗网络,小样本学习技术,项目实战

第四阶段:图像处理技术

课程内容:图像基础知识,图像操作及运算,图像几何变换,图像形态学,图像轮廓,图像统计学,图像滤波,项目实战

新手如何学习Python数据分析

python数据分析的门槛较低,如果是python零基础开始学,学习的步骤大概是python基础、数据采集、数据处理、数据分析、数据可视化。

首先学习一点python基础的知识,Python语言基础,函数,文件操作,面向对象,异常处理,模块和包,Linux系统使用,Mysql数据库等;

其次就可以学习一些基本的爬虫,进行数据采集,当然也有很多爬虫工具,直接使用即可。

然后就可以学习数据分析方面知识,主要是学习pandas、numpy等等;

再然后就要学习数据可视化来向别人展现数据,常用matplotlib实现,主要包括一些基本的统计图的绘制,比如条形图,柱状图,散点图。还有一些进阶绘图,比如分位数图,相关系数图等等。还需要掌握3D绘图可视化。

python哪家的培训比较好?价钱是多少?

相信在IT领域发展的同学对Java很熟悉。Java编程语言排行中一直处于领先地位,这可以直接体现Java的重要。因此很多同学准备参加Python培训机构系统学习。那么,Python培训机构哪家比较好?下面我们介绍一下。

随着Java的普及,越来越多的人了解Java,企业也会对求职者提出更高的要求,他们想招聘一些能马上开始工作的人,所以往往会招聘一些有项目开发经验的人。这就是为什么那么多计算机专业的大学生找不到工作,所以越来越多的大学生会选择在毕业前后参加一些专业的Python培训课程,以增加他们的实践经验。只有增强自己的力量,才能立于不败之地。

Python培训机构哪家比较好?判断Python培训机构好与坏主要看以下几个方面

1.看教学课程内容

学习Java技术,最主要是与时俱进,掌握的技术点能够满足时下企业的用人需求。而想要了解一家培训机构所提供的课程是否新颖,也可以去机构的官网上看看,了解自己想学习的学科的课程大纲。看看学习路线图是如何安排的,有没有从零到一的系统搭建,是不是有强化实训、实操的比重,有尽量多的项目实战。因为企业对Java从业者的技术能力和动手实战能力要求较高。

2.看师资力量

因为Java开发技术知识的专业性很强,如果盲目去学很容易走进误区。相反,有讲师带领,站在巨人的肩膀上,往往事半功倍。毕竟现在这个时代只要多跟别人交流才能获得更多更有价值的信息,初学者千万不能闭门造车。

3.看口碑

行业内口碑比较好,学生对培训机构比较认可,这种机构把精力放在了学生身上的机构,才是做教育的应有态度。

4.看就业情况

以学生就业为目标的培训机构现在才是最主要的。要知道就业也是教学成果的体现,没有好的教学保证是做不到好的就业的。

5.上门免费试听

试听是为了更好的去感受培训机构的课程内容、讲课风格、班级氛围等,同时也能通过和班上在读同学进行交流,更进一步去了解这家培训机构各个方面是否符合自己的需要。

python初学者怎么入门

零基础编程学python:

学习Python的基本语法也,只有熟练掌握基本语法之后才能完成一些简单的实验。对于零基础小白推荐报班学习Python,培训机构会为学员提供系统的学习方案、经验丰富的讲师、大量企业级项目实训以及贴心的就业服务。

含义

如果基础比较薄弱,或者干脆没有任何计算机基础,学习Python的基本语法也不会有太大的困难,但是学习时间会有一定的延长,你只有熟练掌握基本语法之后才能完成一些简单的实验。对于零基础小白推荐报班学习Python,培训机构会为学员提供系统的学习方案、经验丰富的讲师、大量企业级项目实训以及贴心的就业服务。


当前标题:关于python函数基础实训的信息
当前地址:http://6mz.cn/article/hpdcsd.html

其他资讯