快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

神经网络代码java,神经网络代码实现

求神经网络算法的一个代码示例(C、C++或java一类的)

在matlab里建立一个.m的M文件,把代码输进去,保存,运行就可以了。 演示程序是在command 里打demo就可以了找到了 . 你邮箱多少,我只有简单的BP神经网络程序。

成都创新互联的客户来自各行各业,为了共同目标,我们在工作上密切配合,从创业型小企业到企事业单位,感谢他们对我们的要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。专业领域包括成都做网站、成都网站建设、电商网站开发、微信营销、系统平台开发。

急求BP神经网络算法,用java实现!!!

见附件,一个基本的用java编写的BP网络代码。

BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

如何用70行Java代码实现神经网络算法

如何用70行Java代码实现神经网络算法

import java.util.Random;

public class BpDeep{

public double[][] layer;//神经网络各层节点

public double[][] layerErr;//神经网络各节点误差

public double[][][] layer_weight;//各层节点权重

public double[][][] layer_weight_delta;//各层节点权重动量

public double mobp;//动量系数

public double rate;//学习系数

public BpDeep(int[] layernum, double rate, double mobp){

this.mobp = mobp;

this.rate = rate;

layer = new double[layernum.length][];

layerErr = new double[layernum.length][];

layer_weight = new double[layernum.length][][];

layer_weight_delta = new double[layernum.length][][];

Random random = new Random();

for(int l=0;llayernum.length;l++){

layer[l]=new double[layernum[l]];

layerErr[l]=new double[layernum[l]];

if(l+1layernum.length){

layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];

layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];

for(int j=0;jlayernum[l]+1;j++)

for(int i=0;ilayernum[l+1];i++)

layer_weight[l][j][i]=random.nextDouble();//随机初始化权重

}

}

}

//逐层向前计算输出

public double[] computeOut(double[] in){

for(int l=1;llayer.length;l++){

for(int j=0;jlayer[l].length;j++){

double z=layer_weight[l-1][layer[l-1].length][j];

for(int i=0;ilayer[l-1].length;i++){

layer[l-1][i]=l==1?in[i]:layer[l-1][i];

z+=layer_weight[l-1][i][j]*layer[l-1][i];

}

layer[l][j]=1/(1+Math.exp(-z));

}

}

return layer[layer.length-1];

}

//逐层反向计算误差并修改权重

public void updateWeight(double[] tar){

int l=layer.length-1;

for(int j=0;jlayerErr[l].length;j++)

layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l--0){

for(int j=0;jlayerErr[l].length;j++){

double z = 0.0;

for(int i=0;ilayerErr[l+1].length;i++){

z=z+l0?layerErr[l+1][i]*layer_weight[l][j][i]:0;

layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整

layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整

if(j==layerErr[l].length-1){

layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整

layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整

}

}

layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差

}

}

}

public void train(double[] in, double[] tar){

double[] out = computeOut(in);

updateWeight(tar);

}

}


分享标题:神经网络代码java,神经网络代码实现
URL网址:http://6mz.cn/article/hogidj.html

其他资讯