快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

包含go语言统计耗时的词条

初学go语言,请教生成随机数为何线程越多速度越慢?

#include stdio.h

创新互联-专业网站定制、快速模板网站建设、高性价比阳高网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式阳高网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖阳高地区。费用合理售后完善,十余年实体公司更值得信赖。

#include stdlib.h

#include time.h //用到了time函数

int main()

{ int i,number;

srand((unsigned) time(NULL)); //用时间做种,每次产生随机数不一样

for (i=0; i50; i++)

{

number = rand() % 101; //产生0-100的随机数

printf("%d ", number);

}

return 0;

}

Prometheus的四大指标类型

Prometheus有4大指标类型(Metrics Type),分别是Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)和Summary(摘要)。

这是在Prometheus客户端(目前主要有Go、Java、Python、Ruby等语言版本)中提供的4种核心指标类型,但是Prometheus的服务端并不区分指标类型,而是简单地把这些指标统一视为无类型的时间序列。

注意:

font color=red上面这句话应该这么理解,四个指标类型,实际上就是客户端采集数据的四个维度,采集这四个维度的指标数据,但是最终汇总到服务端那里,则是对这四个维度无感的,只是简单的作为时间序列存储起来。/font

 计数器表示一种单调递增的指标,除非发生重置的情况下下只增不减,其样本值应该是不断增大的。例如,可以使用Counter类型的指标来表示服务的请求数、已完成的任务数、错误发生的次数等。

 但是,计数器计算的总数对用户来说大多没有什么用,大家千万不要将计数器类型应用于样本数据非单调递增的指标上,比如当前运行的进程数量、当前登录的用户数量等应该使用仪表盘类型。

为了能够更直观地表示样本数据的变化情况,往往需要计算样本的增长速率,这时候通常使用PromQL的rate、topk、increase和irate等函数,如下所示:

如上所示,速率的输出rate(v range-vector)也应该用仪表盘来承接结果。

在上面的案例中,如果有一个标签是Device,那么在统计每台机器每秒接受的HTTP请求数时,可以用如下的例子进行操作。

补充

 这背后与rate()的实现方式有关,rate()在设计上假定对应的指标是一个计数器,也就是只有font color=redincr(增加)和reset(归零)/font两种行为。而执行了sum()或其他聚合操作之后,得到的就不再是一个计数器了。举个例子,比如sum()的计算对象中有一个归零了,那整体的和会下降,而不是归零,这会影响rate()中判断reset(归零)的逻辑,从而导致错误的结果。

 increase(v range-vector)函数传递的参数是一个区间向量,increase函数获取区间向量中的第一个和最后一个样本并返回其增长量。下面的例子可以查询Counter类型指标的增长速率,可以获取http_requests_total在最近5分钟内的平均样本,其中300代表300秒。

 rate和increase函数计算的增长速率容易陷入font color=red长尾效应中/font。比如在 某一个由于访问量或者其他问题导致CPU占用100%的情况中,通过计算在时间窗口内的平均增长速率是无法反映出该问题的 。

 为什么监控和性能测试中,我们更关注p95/p99位?就是因为长尾效应。由于个别请求的响应时间需要1秒或者更久,font color=red传统的响应时间的平均值就体现不出响应时间中的尖刺了/font,去尖刺也是数据采集中一个很重要的工序,这就是所谓的长尾效应。p95/p99就是长尾效应的分割线,如表示99%的请求在XXX范围内,或者是1%的请求在XXX范围之外。99%是一个范围,意思是99%的请求在某一延迟内,剩下的1%就在延迟之外了。只是正推与逆推而已,是一种概念的两种不同描述。

 irate(v range-vector)是PromQL针对长尾效应专门提供的灵敏度更高的函数。irate同样用于计算区间向量的增长速率,但是其反映出的是瞬时增长速率。irate函数是通过区间向量中最后两个样本数据来计算区间向量的增长速率的。这种方式可以避免在时间窗口范围内的“长尾问题”,并且体现出更好的灵敏度。通过irate函数绘制的图标能够更好地反映样本数据的瞬时变化状态。irate的调用命令如下所示。

 irate函数相比于rate函数提供了更高的灵敏度,不过分析长期趋势时或者在告警规则中,irate的这种灵敏度反而容易造成干扰。因此,在长期趋势分析或者告警中更推荐使用rate函数。

 仪表盘类型代表一种font color=red样本数据可以任意变化的指标,即可增可减/font。它可以理解为状态的快照,Gauge通常用于表示温度或者内存使用率这种指标数据,也可以表示能随时增加或减少的“总数”,例如当前并发请求的数量node_memory_MemFree(主机当前空闲的内容大小)、node_memory_MemAvailable(可用内存大小)等。在使用Gauge时,用户往往希望使用它们font color=red求和、取平均值、最小值、最大值/font等。

 以Prometheus经典的Node Exporter的指标node_filesystem_size_bytes为例,它可以报告从node_filesystem_size_bytes采集来的文件系统大小,包含device、fstype和mountpoint等标签。如果想要对每一台机器上的总文件系统大小求和(sum),可以使用如下PromQL语句。

 without可以让sum指令根据相同的标签进行求和,但是忽略without涵盖的标签。如果在实际工作中需要忽略更多标签,可以根据实际情况在without里传递更多指标。

补充 :

node_filesystem_size_bytes指标查询

device, fstype, mountpoint都是他的标签。

sum without(device, fstype, mountpoint)(node_filesystem_size_bytes)查询

 如果要根据Node Exporter的指标node_filesystem_size_bytes计算每台机器上最大的文件安装系统大小,只需要将上述案例中的sum函数改为max函数,如下所示。

 除了求和、求最大值等,利用Gauge的函数求最小值和平均值等原理是类似的。除了基本的操作外,Gauge经常结合PromQL的predict_linear和delta函数使用。

 predict_linear(v range-vector,t scalar)函数可以预测时间序列v在t秒后的值,就是使用线性回归的方式,预测样本数据的Gauge变化趋势。例如,基于2小时的样本数据,预测未来24小时内磁盘是否会满,如下所示:

PromQL还有一个内置函数delta(),它可以获取样本在一段时间内的变化情况,也通常作用于Gauge。例如,计算磁盘空间在2小时内的差异,如下所示。

Histogram是一个对数据分布情况的图形表示,由一系列高度不等的长条图(bar)或线段表示,用于展示单个测度得知的分布。

[图片上传失败...(image-3e55f2-1622153155462)]

上边界、样本值总和、样本总数

例子

这三个查询一起看

所有样本值的总和,命名为basename_sum。

prometheus_http_request_duration_seconds_sum{handler="/targets",instance="192.168.16.134:9090",job="prometheus"}0.405075955 表示12 次http请求的总响应时间是0.405075955

命名为basename_count,其值和basename_bucket{le="+Inf"}相同(所有)。

prometheus_http_request_duration_seconds_count{handler="/targets",instance="192.168.16.134:9090",job="prometheus"}12 表示总共发生了12次请求

 sum函数和count函数相除,可以得到一些平均值,比如Prometheus一天内的平均压缩时间,可由查询结果除以instance标签数量得到,如下所示。

 除了Prometheus内置的压缩时间,prometheus_local_storage_series_chunks_persisted表示Prometheus中每个时序需要存储的chunk数量,也可以用于计算待持久化的数据的分位数。

 Histogram可以用于观察样本数据的分布情况。Histogram的分位数计算需要通过histogram_quantile(φfloat,b instant-vector)函数进行计算,但是histogram_quantile计算所得并非精确值。其中,φ(0φ1)表示需要计算的分位数(这个值主要是通过prometheus_http_request_duration_seconds_bucket和prometheus_http_request_duration_seconds_sum两个指标得到的,是一个近似值)。

例子如下。

 与Histogram类型类似,摘要用于表示一段时间内的数据采样的结果(通常是请求持续时间或响应大小等),但它直接存储了分位数(通过客户端计算,然后展示出来),而非通过区间来计算(Histogram的分位数需要通过histogram_quantile(φfloat,b instant-vector)函数计算得到)。因此,对于分位数的计算,Summary在通过PromQL进行查询时有更好的性能表现,而Histogram则会消耗更多的资源。反之,对于客户端而言,Histogram消耗的资源更少。在选择这两种方式时,用户应该根据自己的实际场景选择。

Histogram是在服务端计算的,Summary是在客户端计算的。

 安装并启动Prometheus后,在访问 时可以看到Prometheus自带的一些Summary信息,这些信息和Histogram一样在注释中(#HELP和#TYPE)也会显示,如下所示。

 在上述例子中,可以看到基于Go语言编写的Prometheus的gc总次数是1907,耗时0.193642882s,其中中位数(quantile=0.5)计算的耗时为4.8366e-05s,代表1907次中50%的次数是小于4.8366e-05s的。

Summary类型的样本也会提供3种指标,假设指标名称为basename。

Summary和Histogram的异同

Summary的强大之处就是可以利用除法去计算时间的平均值。如果要从Histogram和Summary中计算最近5分钟内的平均请求持续时间http_request_duration_seconds,可以用如下表达式进行。

count本质上是一个计数器,sum通常情况下也会像计数器那样工作。但是font color=redSummary和Histogram可能观察到负值,比如温度(-20℃),这种情况下会导致观察的总量下降,无法再使用rate函数/font。

比如下面的例子就可以计算过去5分钟内每次响应中返回的平均字节数。

关于这个例子,我们需要注意几点。

·因为http_response_size_bytes_count和http_response_size_bytes_sum是计数器类型,所以必须在计算前先使用rate等函数。

·因为Prometheus的API会有很多handler,所以可以使用without过滤掉handler的返回值。

·PromQL要先执行rate()再执行sum(),不能先执行sum()再执行rate()。

·在统计学上,尤其是计算平均值时,要先进行sum等求和运算再做除法。对一个平均值再求平均是不正确的,如下所示。

count的例子

案例一:计算所有的实例CPU核心数。

count by (instance) ( count by (instance,cpu) (node_cpu_seconds_total{mode=

"system"}) )

案例二:计算单个实例192.168.1.1的CPU核心数。

count by (instance) ( count by (instance,cpu) (node_cpu_seconds_total{mode="system",

instance="192.168.1.1"})

go语言 ioutil.ReadFile 与ioutil.ReadAll差别

   当读取91.2 MB文件时,read1耗时43ms,read2耗时99ms。

查看源码:

读取文件主要是通过 Read(p []byte) (n int, err error) :

官方文档中关于该接口方法的说明:

结论:

  ReadFile(filename string)方法之所以速度快的原因就是先计算出file文件的size,在初始化对应size大小的buff,传入ReadRead(p []byte) 来读取字节流

go语言有前景吗?

就目前来看还是很有前景,因为越来越火了,不过他的应用领域还是局限在高并发处理和网站开发,毕竟是后起之秀所以在其他桌面程序领域没那么容易普及和超越c++,找工作就不推荐学go

php和go语言哪个好

前言

最近工作中遇到的一个场景,php项目中需要使用一个第三方的功能,而恰好有一个用Golang写好的类库。那么问题就来了,要如何实现不同语言之间的通信呢?下面就来一起看看吧。

常规的方案

1、 用Golang写一个http/TCP服务,php通过http/TCP与Golang通信

2、将Golang经过较多封装,做为php扩展。

3、PHP通过系统命令,调取Golang的可执行文件

存在的问题

1、http请求,网络I/O将会消耗大量时间

2、需要封装大量代码

3、PHP每调取一次Golang程序,就需要一次初始化,时间消耗很多

优化目标

1、Golang程序只初始化一次(因为初始化很耗时)

2、所有请求不需要走网络

3、尽量不大量修改代码

解决方案

1、简单的Golang封装,将第三方类库编译生成为一个可执行文件

2、PHP与Golang通过双向管道通信

使用双向管道通信优势

1:只需要对原有Golang类库进行很少的封装

2:性能最佳 (IPC通信是进程间通信的最佳途径)

3:不需要走网络请求,节约大量时间

4:程序只需初始化一次,并一直保持在内存中

具体实现步骤

1:类库中的原始调取demo

package main

import (

"fmt"

"github.com/yanyiwu/gojieba"

"strings"

)

func main() {

x := gojieba.NewJieba()

defer x.Free()

s := "小明硕士毕业于中国科学院计算所,后在日本京都大学深造"

words := x.CutForSearch(s, true)

fmt.Println(strings.Join(words, "/"))

}

保存文件为main.go,就可以运行

2:调整后代码为:

package main

import (

"bufio"

"fmt"

"github.com/yanyiwu/gojieba"

"io"

"os"

"strings"

)

func main() {

x := gojieba.NewJieba(

"/data/tmp/jiebaDict/jieba.dict.utf8",

"/data/tmp/jiebaDict/hmm_model.utf8",

"/data/tmp/jiebaDict/user.dict.utf8"

)

defer x.Free()

inputReader := bufio.NewReader(os.Stdin)

for {

s, err := inputReader.ReadString('\n')

if err != nil err == io.EOF {

break

}

s = strings.TrimSpace(s)

if s != "" {

words := x.CutForSearch(s, true)

fmt.Println(strings.Join(words, " "))

} else {

fmt.Println("get empty \n")

}

}

}

只需要简单的几行调整,即可实现:从标准输入接收字符串,经过分词再输出

测试:

# go build test

# ./test

# //等待用户输入,输入”这是一个测试“

# 这是 一个 测试 //程序

3:使用cat与Golang通信做简单测试

//准备一个title.txt,每行是一句文本

# cat title.txt | ./test

正常输出,表示cat已经可以和Golang正常交互了

4:PHP与Golang通信

以上所示的cat与Golang通信,使用的是单向管道。即:只能从cat向Golang传入数据,Golang输出的数据并没有传回给cat,而是直接输出到屏幕。但文中的需求是:php与Golang通信。即php要传数据给Golang,同时Golang也必须把执行结果返回给php。因此,需要引入双向管道。

在PHP中管道的使用:popen("/path/test") ,具体就不展开说了,因为此方法解决不了文中的问题。

双向管道:

$descriptorspec = array(

0 = array("pipe", "r"),

1 = array("pipe", "w")

);

$handle = proc_open(

'/webroot/go/src/test/test',

$descriptorspec,

$pipes

);

fwrite($pipes['0'], "这是一个测试文本\n");

echo fgets($pipes[1]);

解释:使用proc_open打开一个进程,调用Golang程序。同时返回一个双向管道pipes数组,php向$pipe['0']中写数据,从$pipe['1']中读数据。

好吧,也许你已经发现,我是标题档,这里重点要讲的并不只是PHP与Golang如何通信。而是在介绍一种方法: 通过双向管道让任意语言通信。(所有语言都会实现管道相关内容)

测试:

通过对比测试,计算出各个流程占用的时间。下面提到的title.txt文件,包含100万行文本,每行文本是从b2b平台取的商品标题

1: 整体流程耗时

time cat title.txt | ./test /dev/null

耗时:14.819秒,消耗时间包含:

进程cat读出文本

通过管道将数据传入Golang

Golang处理数据,将结果返回到屏幕

2:计算分词函数耗时。方案:去除分词函数的调取,即:注释掉Golang源代码中的调取分词那行的代码

time cat title.txt | ./test /dev/null

耗时:1.817秒时间,消耗时间包含:

进程cat读出文本

通过管道将数据传入Golang

Golang处理数据,将结果返回到屏幕

分词耗时 = (第一步耗时) - (以上命令所耗时)

分词耗时 : 14.819 - 1.817 = 13.002秒

3:测试cat进程与Golang进程之间通信所占时间

time cat title.txt /dev/null

耗时:0.015秒,消耗时间包含:

进程cat读出文本

通过管道将数据传入Golang

go处理数据,将结果返回到屏幕

管道通信耗时:(第二步耗时) - (第三步耗时)

管道通信耗时: 1.817 - 0.015 = 1.802秒

4:PHP与Golang通信的时间消耗

编写简单的php文件:

?php

$descriptorspec = array(

0 = array("pipe", "r"),

1 = array("pipe", "w")

);

$handle = proc_open(

'/webroot/go/src/test/test',

$descriptorspec,

$pipes

);

$fp = fopen("title.txt", "rb");

while (!feof($fp)) {

fwrite($pipes['0'], trim(fgets($fp))."\n");

echo fgets($pipes[1]);

}

fclose($pipes['0']);

fclose($pipes['1']);

proc_close($handle);

流程与上面基本一致,读出title.txt内容,通过双向管道传入Golang进程分词后,再返回给php (比上面的测试多一步:数据再通过管道返回)

time php popen.php /dev/null

耗时:24.037秒,消耗时间包含:

进程PHP读出文本

通过管道将数据传入Golang

Golang处理数据

Golang将返回结果再写入管道,PHP通过管道接收数据

将结果返回到屏幕

结论:

1 :整个分词过程中的耗时分布

使用cat控制逻辑耗时: 14.819 秒

使用PHP控制逻辑耗时: 24.037 秒(比cat多一次管道通信)

单向管道通信耗时: 1.8 秒

Golang中的分词函数耗时: 13.002 秒

2:分词函数的性能: 单进程,100万商品标题分词,耗时13秒

以上时间只包括分词时间,不包括词典载入时间。但在本方案中,词典只载入一次,所以载入词典时间可以忽略(1秒左右)

3:PHP比cat慢 (这结论有点多余了,呵呵)

语言层面慢: (24.037 - 1.8 - 14.819) / 14.819 = 50%

单进程对比测试的话,应该不会有哪个语言比cat更快。

相关问题:

1:以上Golang源码中写的是一个循环,也就是会一直从管道中读数据。那么存在一个问题:是不是php进程结束后,Golang的进程还会一直存在?

管道机制自身可解决此问题。管道提供两个接口:读、写。当写进程结束或者意外挂掉时,读进程也会报错,以上Golang源代码中的err逻辑就会执行,Golang进程结束。

但如果PHP进程没有结束,只是暂时没有数据传入,此时Golang进程会一直等待。直到php结束后,Golang进程才会自动结束。

2:能否多个php进程并行读写同一个管道,Golang进程同时为其服务?

不可以。管道是单向的,如果多个进程同时向管道中写,那Golang的返回值就会错乱。

可以多开几个Golang进程实现,每个php进程对应一个Golang进程。

最后,上面都是瞎扯的。如果你了解管道、双向管道,上面的解释对你基本没啥用。但如果你不了解管道,调试上面的代码没问题,但稍有修改就有可能掉坑里。

求用go语言编写的统计脚本

package main

import (

"fmt"

"os"

)

func main() {

if len(os.Args) 2 {

fmt.Println("Please Input File Name!")

return

}

file, err := os.Open(os.Args[1])

if err != nil {

return

}

buff := make([]byte, 1000)

_, err = file.Read(buff)

if err != nil {

return

}

a, c, d, e, _ := Sum(buff)

fmt.Printf("a c d e \n%d %d %d %d\n", a, c, d, e)

}

func Sum(buff []byte) (a, c, d, e, def int) {

for i := 0; i len(buff); i++ {

switch buff[i] {

case 'a':

a++

case 'c':

c++

case 'd':

d++

case 'e':

e++

default:

def++

}

}

return

}


新闻名称:包含go语言统计耗时的词条
标题路径:http://6mz.cn/article/hjsdch.html

其他资讯