十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
转自: python指数、幂数拟合curve_fit
成都创新互联长期为近1000家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为新宾企业提供专业的网站建设、成都做网站,新宾网站改版等技术服务。拥有十年丰富建站经验和众多成功案例,为您定制开发。
1、一次二次多项式拟合
一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。
2、指数幂数拟合curve_fit
使用scipy.optimize 中的curve_fit,幂数拟合例子如下:
下面是指数拟合例子:
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了
从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合。
b=[y1]
[y2]
......
[y100]
解得拟合函数的系数[a,b,c.....d]
CODE:
根据结果可以看到拟合的效果不错。
我们可以通过改变
来调整拟合效果。
如果此处我们把拟合函数改为最高次为x^20的多项式
所得结果如下:
矫正 过拟合 现象
在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:
通过结果可以看出,过拟合现象得到了改善。
任意波形的生成 (geneartion of arbitrary waveform) 在商业,军事等领域都有着重要的应用,诸如空间光通信 (free-space optics communication), 高速信号处理 (high-speed signal processing),雷达 (radar) 等。在任意波形生成后, 如何评估生成的任意波形 成为另外一个重要的话题。
假设有一组实验数据,已知他们之间的函数关系:y=f(x),通过这些信息,需要确定函数中的一些参数项。例如,f 是一个线型函数 f(x)=k*x+b,那么参数 k 和 b 就是需要确定的值。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最小:
这种算法被称之为 最小二乘拟合 (least-square fitting)。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数 leastsq 。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在 Python科学计算——Numpy.genfromtxt 一文中,使用 numpy.genfromtxt 对数字示波器采集的三角波数据导入进行了介绍,今天,就以 4GHz三角波 波形的拟合为案例介绍任意波形的拟合方法。
在 Python科学计算——如何构建模型? 一文中,讨论了如何构建三角波模型。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数 ,最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征。但在波形拟合时,并不是所有的特征参数都要纳入考量,例如,噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时,不应将噪声参数纳入考量,最终模型如下:
在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:
有时候,为了使图片有更好的效果,需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后,用拟合后的相应数据对 p0 进行修正。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差 (root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形: