十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
1、plt.legendplt.legend(loc=0)#显示图例的位置。
创新互联建站专注于大名企业网站建设,成都响应式网站建设,商城网站定制开发。大名网站建设公司,为大名等地区提供建站服务。全流程按需求定制制作,专业设计,全程项目跟踪,创新互联建站专业和态度为您提供的服务
2、plt.figureplt.figure(figsize=(14,6),dpi=80)#设置绘图区域的大小和像素。
3、plt.xticksplt.xticks(new_year)#设置x轴的刻度线为new_year,new_year可以为数组。
4、plt.xlabelplt.xlabel('year')#x轴标签。
5、plt.plotplt.plot(number,color='blue',label="actualvalue")#将实际值的折线设置为蓝色。
6、两个图分开fig,axes=plt.subplots(2,1,sharex=True,figsize=(10,10))。
7、画竖直线plt.axvline(99,linestyle="dotted",linewidth=4,color='r')#99表示横坐标。
8、图片保存plt.savefig('timeseries_y.jpg')。
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
为避免中文显示出错,需导入matplotlib.pylab库
1.2.1 确定数据
1.2.2 创建画布
1.2.3 添加标题
1.2.4 添加x,y轴名称
1.2.5 添加x,y轴范围
1.2.6 添加x,y轴刻度
1.2.7 绘制曲线、图例, 并保存图片
保存图片时,dpi为清晰度,数值越高越清晰。请注意,函数结尾处,必须加plt.show(),不然图像不显示。
绘制流程与绘制不含子图的图像一致,只需注意一点:创建画布。
合理调整figsize、dpi,可避免出现第一幅图横轴名称与第二幅图标题相互遮盖的现象.
2.2.1 rc参数类型
2.2.2 方法1:使用rcParams设置
2.2.3 方法2:plot内设置
2.2.4 方法3:plot内简化设置
方法2中,线条形状,linestyle可简写为ls;线条宽度,linewidth可简写为lw;线条颜色,color可简写为c,等等。
今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?
搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图
第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。
它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:
turtle.forward(200)
turtle.left(170)
第一个命令是移动200个单位并画出来轨迹
第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度
然后呢? 循环重复就画出来这个图了
好玩吧。
有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。
Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。
Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。
使用起来也挺简单,
首先import matplotlib.pyplot as plt 导入画图的图。
然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。
接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。
现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。
我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?
假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:
这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下图:
自己画的是不是很香,哈哈!
然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛
plt.plot(df['time'], df['Ahr999'])
图形如下:
但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。
继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制
fig = plt.figure() # 多图
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price") # 绘制第一个图比特币价格
ax1.set_ylabel('BTC price') # 加上标签
# 第二个直接对称就行了
ax2 = ax1.twinx()# 在右边增加一个Y轴
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999") # 绘制第二个图Ahr999指数,红色
ax2.set_ylim([0, 50])# 设定第二个Y轴范围
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 网格
fig.legend(loc="center")#图例
plt.show()
跑起来看看效果,虽然丑了点,但终于跑通了。
这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。
有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。