十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
#网上搜来的
成都创新互联公司专注于企业成都营销网站建设、网站重做改版、永昌网站定制设计、自适应品牌网站建设、H5高端网站建设、商城网站建设、集团公司官网建设、外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为永昌等各大城市提供网站开发制作服务。
# 高斯坐标转经纬度算法 # B=大地坐标X # C=大地坐标Y # IsSix=6度带或3度带
import math
def GetLatLon2(B, C,IsSix):
#带号
D = math.trunc( C/ 1000000)
#中央经线(单位:弧度)
K = 0
if IsSix:
K = D * 6 - 3 #6度带计算
else:
K = D * 3 #3度带计算
L = B/(6378245*(1-0.006693421623)*1.0050517739)
M = L +(0.00506237764 * math.sin(2*L)/2-0.00001062451*math.sin(4*L)/4+0.0000002081*math.sin(6*L)/6)/1.0050517739
N = L +(0.00506237764 * math.sin(2*M)/2-0.00001062451*math.sin(4*M)/4+0.0000002081*math.sin(6*M)/6)/1.0050517739
O = L +(0.00506237764 * math.sin(2*N)/2-0.00001062451*math.sin(4*N)/4+0.0000002081*math.sin(6*N)/6)/1.0050517739
P = L +(0.00506237764 * math.sin(2*O)/2-0.00001062451*math.sin(4*O)/4+0.0000002081*math.sin(6*O)/6)/1.0050517739
Q = L +(0.00506237764 * math.sin(2*P)/2-0.00001062451*math.sin(4*P)/4+0.0000002081*math.sin(6*P)/6)/1.0050517739
R = L +(0.00506237764 * math.sin(2*Q)/2-0.00001062451*math.sin(4*Q)/4+0.0000002081*math.sin(6*Q)/6)/1.0050517739
S = math.tan(R)
T = 0.006738525415*(math.cos(R))**2
U = 6378245/math.sqrt(1-0.006693421623*(math.sin(R))**2)
V = 6378245*(1-0.006693421623)/(math.sqrt((1-0.006693421623*(math.sin(R))**2)))**3
W = 5+3*S**2+T-9*T*S**2
X = 61+90*S**2+45*S**4
Y = 1+2*S**2+T**2
Z = 5+28*S**2+24*S**4+6*T+8*T*S**2
Lat= (180/math.pi)*(R-(C-D*1000000-500000)**2*S/(2*V*U)+(C-D*1000000-500000)**4*W/(24*U**3*V)-(C-D*1000000-500000)**6*X/(7200*U**5*V))
Lon= (180/math.pi)*(C-D*1000000-500000)*(1-(C-D*1000000-500000)**2*Y/(6*U**2)+(C-D*1000000-500000)**4*Z/(120*U**4))/(U*math.cos(P))
Lat = Lat
Lon = K + Lon
return (Lon, Lat)
borderType= None)函数
此函数利用高斯滤波器平滑一张图像。该函数将源图像与指定的高斯核进行卷积。
src:输入图像
ksize:(核的宽度,核的高度),输入高斯核的尺寸,核的宽高都必须是正奇数。否则,将会从参数sigma中计算得到。
dst:输出图像,尺寸与输入图像一致。
sigmaX:高斯核在X方向上的标准差。
sigmaY:高斯核在Y方向上的标准差。默认为None,如果sigmaY=0,则它将被设置为与sigmaX相等的值。如果这两者都为0,则它们的值会从ksize中计算得到。计算公式为:
borderType:像素外推法,默认为None(参考官方文档 BorderTypes
)
在图像处理中,高斯滤波主要有两种方式:
1.窗口滑动卷积
2.傅里叶变换
在此主要利用窗口滑动卷积。其中二维高斯函数公式为:
根据上述公式,生成一个3x3的高斯核,其中最重要的参数就是标准差 ,标准差 越大,核中心的值与周围的值差距越小,曲线越平滑。标准差 越小,核中心的值与周围的值差距越大,曲线越陡峭。
从图像的角度来说,高斯核的标准差 越大,平滑效果越不明显。高斯核的标准差 越小,平滑效果越明显。
可见,标准差 越大,图像平滑程度越大
参考博客1:关于GaussianBlur函数
参考博客2:关于高斯核运算
clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end
需要载入numpy和scipy库,若需要做可视化还需要matplotlib(附加dateutil, pytz, pyparsing, cycler, setuptools库)。不画图就只要前两个。
如果没有这些库的话去 下载对应版本,之后解压到 C:\Python27\Lib\site-packages。
import numpy as np
import pylab as plt
#import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy import asarray as ar,exp
x = ar(range(10))
y = ar([0,1,2,3,4,5,4,3,2,1])
def gaussian(x,*param):
return param[0]*np.exp(-np.power(x - param[2], 2.) / (2 * np.power(param[4], 2.)))+param[1]*np.exp(-np.power(x - param[3], 2.) / (2 * np.power(param[5], 2.)))
popt,pcov = curve_fit(gaussian,x,y,p0=[3,4,3,6,1,1])
print popt
print pcov
plt.plot(x,y,'b+:',label='data')
plt.plot(x,gaussian(x,*popt),'ro:',label='fit')
plt.legend()
plt.show()