十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
1把需要的记录导出.
金水网站制作公司哪家好,找创新互联建站!从网页设计、网站建设、微信开发、APP开发、响应式网站等网站项目制作,到程序开发,运营维护。创新互联建站从2013年成立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联建站。
2 把这个表删除
3, 建立一个跟原来一样的表,
4 把导出的数据导入
提问:如何设计或优化千万级别的大表?此外无其他信息,个人觉得这个话题有点范,就只好简单说下该如何做,对于一个存储设计,必须考虑业务特点,收集的信息如下:
1.数据的容量:1-3年内会大概多少条数据,每条数据大概多少字节;
2.数据项:是否有大字段,那些字段的值是否经常被更新;
3.数据查询SQL条件:哪些数据项的列名称经常出现在WHERE、GROUP BY、ORDER BY子句中等;
4.数据更新类SQL条件:有多少列经常出现UPDATE或DELETE 的WHERE子句中;
5.SQL量的统计比,如:SELECT:UPDATE+DELETE:INSERT=多少?
6.预计大表及相关联的SQL,每天总的执行量在何数量级?
7.表中的数据:更新为主的业务 还是 查询为主的业务
8.打算采用什么数据库物理服务器,以及数据库服务器架构?
9.并发如何?
10.存储引擎选择InnoDB还是MyISAM?
大致明白以上10个问题,至于如何设计此类的大表,应该什么都清楚了!
至于优化若是指创建好的表,不能变动表结构的话,那建议InnoDB引擎,多利用点内存,减轻磁盘IO负载,因为IO往往是数据库服务器的瓶颈。
另外对优化索引结构去解决性能问题的话,建议优先考虑修改类SQL语句,使他们更快些,不得已只靠索引组织结构的方式,当然此话前提是, 索引已经创建的非常好,若是读为主,可以考虑打开query_cache, 以及调整一些参数值:sort_buffer_size,read_buffer_size,read_rnd_buffer_size,join_buffer_siz。
更多信息参见:
MySQL数据库服务器端核心参数详解和推荐配置
不纸上谈兵,说一下我的思路以及我的解决,抛砖引玉了
我最近正在解决这个问题
我现在的公司有三张表,是5亿的数据,每天张表每天的增量是100w
每张表大概在10个columns左右
下面是我做的测试和对比
1.首先看engine,在大数据量情况下,在没有做分区的情况下
mysiam比innodb在只读的情况下,效率要高13%左右
2.在做了partition之后,你可以去读一下mysql的官方文档,其实对于partition,专门是对myisam做的优化,对于innodb,所有的数据是存在ibdata里面的,所以即使你可以看到schema变了,其实没有本质的变化
在分区出于同一个physical disk下面的情况下,提升大概只有1%
在分区在不同的physical disk下,我分到了三个不同的disks下,提升大概在3%,其实所谓的吞吐量,由很多因素决定的,比如你的explain parition时候可以看到,record在那一个分区,如果每个分区都有,其实本质上没有解决读的问题,这样只会提升写的效率。
另外一个问题在于,分区,你怎么分,如果一张表,有三个column都是经常被用于做查询条件的,其实是一件很悲惨的事情,因为你没有办法对所有的sql做针对性的分区,如果你只是如mysql官方文档上说的,只对时间做一个分区,而且你也只用时间查询的话,恭喜你
3.表主要用来读还是写,其实这个问题是不充分的,应该这样问,你在写入的时候,同时并发的查询多么?我的问题还比较简单,因为mongodb的 shredding支持不能,在crush之后,还是回到mysql,所以在通常情况下,9am-9pm,写入的情况很多,这个时候我会做一个 view,view是基于最近被插入或者经常被查询的,通过做view来分离读取,就是说写是在table上的,读在进行逻辑判断前是在view上操作的
4做一些archive table,比如先对这些大表做很多已有的统计分析,然后通过已有的分析+增量来解决
5如果你用mysiam,还有一个问题你要注意,如果你的.configure的时候,加了一个max index length参数的时候,当你的record数大于制定长度的时候,这个index会被disable
优化方案:
主从同步+读写分离:
这个表在有设备条件的情况下,读写分离,这样能减少很多压力,而且数据稳定性也能提高
纵向分表:
根据原则,每个表最多不要超过5个索引,纵向拆分字段,将部分字段拆到一个新表
通常我们按以下原则进行垂直拆分:(先区分这个表中的冷热数据字段)
把不常用的字段单独放在一张表;
把text,blob等大字段拆分出来放在附表中;
经常组合查询的列放在一张表中;
缺点是:很多逻辑需要重写,带来很大的工作量。
利用表分区:
这个是推荐的一个解决方案,不会带来重写逻辑等,可以根据时间来进行表分区,相当于在同一个磁盘上,表的数据存在不同的文件夹内,能够极大的提高查询速度。
横向分表:
1000W条数据不少的,会带来一些运维压力,备份的时候,单表备份所需时间会很长,所以可以根据服务器硬件条件进行水平分表,每个表有多少数据为准。
1、做分区表,(哪个字段分区很重要,分错会影响性能)。
2、拆表,
可以将历史数据放到 其他表中,例如 abc表中,2013年的数据,拆到 abc_2013表中,2014年的数据拆到abc_2014表中。
我们经常会遇到操作一张大表,发现操作时间过长或影响在线业务了,想要回退大表操作的场景。在我们停止大表操作之后,等待回滚是一个很漫长的过程,尽管你可能对知道一些缩短时间的方法,处于对生产环境数据完整性的敬畏,也会选择不做介入。最终选择不作为的原因大多源于对操作影响的不确定性。实践出真知,下面针对两种主要提升事务回滚速度的方式进行验证,一种是提升操作可用内存空间,一种是通过停实例,禁用 redo 回滚方式进行进行验证。
仔细阅读过官方手册的同学,一定留意到了对于提升大事务回滚效率,官方提供了两种方法:一是增加 innodb_buffer_pool_size 参数大小,二是合理利用 innodb_force_recovery=3 参数,跳过事务回滚过程。第一种方式比较温和,innodb_buffer_pool_size 参数是可以动态调整的,可行性也较高。第二种方式相较之下较暴力,但效果较好。
两种方式各有自己的优点,第一种方式对线上业务系统影响较小,不会中断在线业务。第二种方式效果更显著,会短暂影响业务连续,回滚所有没有提交的事务。
MySQL超大表如何提高count速度
经常用到count统计记录数,表又超级大,这时候sql执行很慢,就是走索引,也是很慢的,怎么办呢?
1.这个时候我们就要想为什么这么慢:根本原因是访问的数据量太大,就算只计算记录数也是很慢的。
2.如何解决?减少数据访问量。
3.怎么才能减少访问量呢?更小的索引。
4.怎么能使索引更小呢?创建前缀索引。
至此我们的方案出来了!下面看看具体的:
表结构:
CREATE TABLE `sbtest3` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_3` (`k`)
) ENGINE=InnoDB AUTO_INCREMENT=5000001 DEFAULT CHARSET=latin1;