十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
一、利用open和write函数
创新互联建站-专业网站定制、快速模板网站建设、高性价比渝水网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式渝水网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖渝水地区。费用合理售后完善,10多年实体公司更值得信赖。
with open('test.txt','w') as f:
f.write(test)
其中test.txt为要保存的文件filename,test为要保存的数据,可以为字符串str类型,也可以是bytes类型,但是此种方法无法保存数组,数组保存需要下面第二种方法。
二、利用np.save函数
np.savetxt('test.txt',test,fmt='%d')
其中test.txt为要保存的文件filename,test为要保存的数组,fmt='%d'为数据保存格式,保存为整数。
将python运行结果保存成txt的具体操作步骤如下:
1、首先我们打开电脑桌面,在电脑桌面上点按win+R进入运行,在搜索框里输入cmd并点击确定。
2、然后我们找到图示选项确认查看一下使用的python软件是否已经安装numpy模块。
3、然后我们可以打开python软件输入代码查看关于save函数的使用语法及其实例。
4、如图所示为关于savetxt函数的使用语法及其实例。
5、如图所示为生成的一个数据如何保存为txt格式文件里的代码。
6、输入代码运行然后我们就可以将python运行结果保存成txt了。
本来是想爬取之后作最佳羁绊组合推算,但是遇到知识点无法消化(知识图谱),所以暂时先不组合了,实力有限
库的安装
1.requests #爬取棋子数据
2.json #棋子数据为js动态,需使用json解析
3.BeautifulSoup
实战前先新建个lol文件夹作为工作目录,并创建子目录data,用于存放数据。
1.爬取数据,新建个py文件,用于爬取云顶数据,命名为data.py
1.1定义个req函数,方便读取。//需设定编码格式,否则会出现乱码
def Re_data(url):
re = requests.get(url)
re.encoding = 'gbk'
data = json.loads(re.text)
return data['data']
1.2定义个Get函数,用于读取数据并使用保存函数进行保存数据,保存格式为json。
def Get_data():
# 获取数据并保存至data目录
base_url = ''
chess = Re_data(base_url + 'chess.js')
race = Re_data(base_url + 'race.js')
job = Re_data(base_url + 'job.js')
equip = Re_data(base_url + 'equip.js')
Save_data(chess,race,job,equip)
1.3定义save函数实现读取的数据进行文件保存,保存目录为工作目录下的data文件夹。
def Save_data(t_chess,t_race,t_job,t_equip):
with open('./data/chess.json','w') as f:
json.dump(t_chess,f,indent='\t')
with open('./data/race.json','w') as f:
json.dump(t_race,f,indent='\t')
with open('./data/job.json','w') as f:
json.dump(t_job,f,indent='\t')
with open('./data/equip.json','w') as f:
json.dump(t_equip,f,indent='\t')
1.4定义主函数main跑起来
if __name__ == '__main__':
start = time.time()
Get_data()
print('运行时间:' + str(time.time() - start) + '秒')
至此,数据爬取完成。
2.种族和职业进行组合。
2.1未完成 //未完成,使用穷举方法进行组合会出现内存不够导致组合失败(for循环嵌套导致数组内存超限)
//待学习,使用知识图谱建立组合优选,可参考:
期间遇到的问题:
1.爬取棋子数据时为动态js加载,需通过json模块的loads方法获取
2.3层for循环嵌套数据量大,导致计算失败,需优化计算方法。
python值大于0的数据保存方法:
1、用numpy.save()和numpy.load()函数。
2、用scipy.io.savemat()将数据保存为.mat格式。Python是一种跨平台的计算机程序设计语言,是ABC语言的替代品,属于面向对象的动态类型语言,最初被设计用于编写自动化脚本,随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。python是人工智能首选的编程语言。
PIL (Python Imaging Library)
Python图像处理库,该库支持多种文件格式,提供强大的图像处理功能。
PIL中最重要的类是Image类,该类在Image模块中定义。
从文件加载图像:
如果成功,这个函数返回一个Image对象。现在你可以使用该对象的属性来探索文件的内容。
format 属性指定了图像文件的格式,如果图像不是从文件中加载的则为 None 。
size 属性是一个2个元素的元组,包含图像宽度和高度(像素)。
mode 属性定义了像素格式,常用的像素格式为:“L” (luminance) - 灰度图, “RGB” , “CMYK”。
如果文件打开失败, 将抛出IOError异常。
一旦你拥有一个Image类的实例,你就可以用该类定义的方法操作图像。比如:显示
( show() 的标准实现不是很有效率,因为它将图像保存到一个临时文件,然后调用外部工具(比如系统的默认图片查看软件)显示图像。该函数将是一个非常方便的调试和测试工具。)
接下来的部分展示了该库提供的不同功能。
PIL支持多种图像格式。从磁盘中读取文件,只需使用 Image 模块中的 open 函数。不需要提供文件的图像格式。PIL库将根据文件内容自动检测。
如果要保存到文件,使用 Image 模块中的 save 函数。当保存文件时,文件名很重要,除非指定格式,否则PIL库将根据文件的扩展名来决定使用哪种格式保存。
** 转换文件到JPEG **
save 函数的第二个参数可以指定使用的文件格式。如果文件名中使用了一个非标准的扩展名,则必须通过第二个参数来指定文件格式。
** 创建JPEG缩略图 **
需要注意的是,PIL只有在需要的时候才加载像素数据。当你打开一个文件时,PIL只是读取文件头获得文件格式、图像模式、图像大小等属性,而像素数据只有在需要的时候才会加载。
这意味着打开一个图像文件是一个非常快的操作,不会受文件大小和压缩算法类型的影响。
** 获得图像信息 **
Image 类提供了某些方法,可以操作图像的子区域。提取图像的某个子区域,使用 crop() 函数。
** 复制图像的子区域 **
定义区域使用一个包含4个元素的元组,(left, upper, right, lower)。坐标原点位于左上角。上面的例子提取的子区域包含300x300个像素。
该区域可以做接下来的处理然后再粘贴回去。
** 处理子区域然后粘贴回去 **
当往回粘贴时,区域的大小必须和参数匹配。另外区域不能超出图像的边界。然而原图像和区域的颜色模式无需匹配。区域会自动转换。
** 滚动图像 **
paste() 函数有个可选参数,接受一个掩码图像。掩码中255表示指定位置为不透明,0表示粘贴的图像完全透明,中间的值表示不同级别的透明度。
PIL允许分别操作多通道图像的每个通道,比如RGB图像。 split() 函数创建一个图像集合,每个图像包含一个通道。 merge() 函数接受一个颜色模式和一个图像元组,然后将它们合并为一个新的图像。接下来的例子交换了一个RGB图像的三个通道。
** 分离和合并图像通道 **
对于单通道图像, split() 函数返回图像本身。如果想处理各个颜色通道,你可能需要先将图像转为RGB模式。
resize() 函数接受一个元组,指定图像的新大小。
rotate() 函数接受一个角度值,逆时针旋转。
** 基本几何变换 **
图像旋转90度也可以使用 transpose() 函数。 transpose() 函数也可以水平或垂直翻转图像。
** transpose **
transpose() 和 rotate() 函数在性能和结果上没有区别。
更通用的图像变换函数为 transform() 。
PIL可以转换图像的像素模式。
** 转换颜色模式 **
PIL库支持从其他模式转为“L”或“RGB”模式,其他模式之间转换,则需要使用一个中间图像,通常是“RGB”图像。
ImageFilter 模块包含多个预定义的图像增强过滤器用于 filter() 函数。
** 应用过滤器 **
point() 函数用于操作图像的像素值。该函数通常需要传入一个函数对象,用于操作图像的每个像素:
** 应用点操作 **
使用以上技术可以快速地对图像像素应用任何简单的表达式。可以结合 point() 函数和 paste 函数修改图像。
** 处理图像的各个通道 **
注意用于创建掩码图像的语法:
Python计算逻辑表达式采用短路方式,即:如果and运算符左侧为false,就不再计算and右侧的表达式,而且返回结果是表达式的结果。比如 a and b 如果a为false则返回a,如果a为true则返回b,详见Python语法。
对于更多高级的图像增强功能,可以使用 ImageEnhance 模块中的类。
可以调整图像对比度、亮度、色彩平衡、锐度等。
** 增强图像 **
PIL库包含对图像序列(动画格式)的基本支持。支持的序列格式包括 FLI/FLC 、 GIF 和一些实验性的格式。 TIFF 文件也可以包含多个帧。
当打开一个序列文件时,PIL库自动加载第一帧。你可以使用 seek() 函数 tell() 函数在不同帧之间移动。
** 读取序列 **
如例子中展示的,当序列到达结尾时,将抛出EOFError异常。
注意当前版本的库中多数底层驱动只允许seek到下一帧。如果想回到前面的帧,只能重新打开图像。
以下迭代器类允许在for语句中循环遍历序列:
** 一个序列迭代器类 **
PIL库包含一些函数用于将图像、文本打印到Postscript打印机。以下是一个简单的例子。
** 打印到Postscript **
如前所述,可以使用 open() 函数打开图像文件,通常传入一个文件名作为参数:
如果打开成功,返回一个Image对象,否则抛出IOError异常。
也可以使用一个file-like object代替文件名(暂可以理解为文件句柄)。该对象必须实现read,seek,tell函数,必须以二进制模式打开。
** 从文件句柄打开图像 **
如果从字符串数据中读取图像,使用StringIO类:
** 从字符串中读取 **
如果图像文件内嵌在一个大文件里,比如 tar 文件中。可以使用ContainerIO或TarIO模块来访问。
** 从tar文档中读取 **
** 该小节不太理解,请参考原文 **
有些解码器允许当读取文件时操作图像。通常用于在创建缩略图时加速解码(当速度比质量重要时)和输出一个灰度图到激光打印机时。
draft() 函数。
** Reading in draft mode **
输出类似以下内容:
注意结果图像可能不会和请求的模式和大小匹配。如果要确保图像不大于指定的大小,请使用 thumbnail 函数。
Python2.7 教程 PIL
Python 之 使用 PIL 库做图像处理
来自