快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

多项式函数Python的简单介绍

多项式拟合平方误差怎么求

线性模型(二)之多项式拟合

站在用户的角度思考问题,与客户深入沟通,找到拜城网站设计与拜城网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都做网站、网站建设、外贸营销网站建设、企业官网、英文网站、手机端网站、网站推广、域名申请、网络空间、企业邮箱。业务覆盖拜城地区。

1. 多项式拟合问题

  多项式拟合(polynominal curve fitting)是一种线性模型,模型和拟合参数的关系是线性的。多项式拟合的输入是一维的,即x=xx=x,这是多项式拟合和线性回归问题的主要区别之一。

  多项式拟合的目标是构造输入xx的MM阶多项式函数,使得该多项式能够近似表示输入xx和输出yy的关系,虽然实际上xx和yy的关系并不一定是多项式,但使用足够多的阶数,总是可以逼近表示输入xx和输出yy的关系的。

  多项式拟合问题的输入可以表示如下:

D={(x1,y1),(x2,y2),...,(xi,yi),...,(xN,yN)}xi∈Ryi∈R

D={(x1,y1),(x2,y2),...,(xi,yi),...,(xN,yN)}xi∈Ryi∈R

  目标输出是得到一个多项式函数:

f(x)=w1x1+w2x2+wixi+...+wMxM+b=(∑i=1Mwixi)+b

f(x)=w1x1+w2x2+wixi+...+wMxM+b=(∑i=1Mwixi)+b

其中MM表示最高阶数为MM。

  可见在线性拟合的模型中,共包括了(M+1)(M+1)个参数,而该模型虽然不是输入xx的线性函数,但却是(M+1)(M+1)个拟合参数的线性函数,所以称多项式拟合为线性模型。对于多项式拟合问题,其实就是要确定这(M+1)(M+1)个参数,这里先假设阶数MM是固定的(MM是一个超参数,可以用验证集来确定MM最优的值,详细的关于MM值确定的问题,后面再讨论),重点就在于如何求出这(M+1)(M+1)个参数的值。

2.优化目标

  多项式拟合是利用多项式函数逼近输入xx和输出yy的函数关系,通过什么指标来衡量某个多项式函数的逼近程度呢?(其实这就是误差/损失函数)。拟合/回归问题常用的评价指标是均方误差(在机器学习中的模型评估与度量博客中,我进行了介绍)。多项式拟合问题也同样采用该评价指标,以均方误差作为误差/损失函数,误差函数越小,模型越好。

E(w,b)=1N∑i=1N[f(xi)−yi]2

E(w,b)=1N∑i=1N[f(xi)−yi]2

  系数1N1N是一常数,对优化结果无影响,可以去除,即将均方误差替换为平方误差:

E(w,b)=∑i=1N[f(xi)−yi]2

E(w,b)=∑i=1N[f(xi)−yi]2

   到这里,就成功把多项式拟合问题变成了最优化问题,优化问题可表示为:

argminw,bE(w,b)

arg⁡minw,b⁡E(w,b)

即需要求得参数{w1,...,wM,b}{w1,...,wM,b}的值,使得E(w,b)E(w,b)最小化。那么如何对该最优化问题求解呢?

3. 优化问题求解

3.1 求偏导,联立方程求解

   直观的想法是,直接对所有参数求偏导,令偏导为0,再联立这M+1M+1个方程求解(因为共有M+1M+1个参数,故求偏导后也是得到M+1M+1个方程)。

E(w,b)=∑i=1N[f(xi)−yi]2=∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]2

E(w,b)=∑i=1N[f(xi)−yi]2=∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]2

利用E(w,b)E(w,b)对各个参数求偏导,如下:

∂E(w,b)∂wj∂E(w,b)∂b=2∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]xji=2∑i=1N[(w1x1i+w2x2i+wixji+...+wMxMi+b)−yi]

∂E(w,b)∂wj=2∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]xij∂E(w,b)∂b=2∑i=1N[(w1xi1+w2xi2+wixij+...+wMxiM+b)−yi]

求导之后,将各个点(xi,yi)(xi,yi)的值带入偏导公式,联立方程求解即可。

  针对该解法,可以举个例子详细说明,比如有两个点(2,3),(5,8)(2,3),(5,8),需要利用二阶多项式f(x)=w1x+w2x2+bf(x)=w1x+w2x2+b拟合。求解过程如下:

该二阶多项式对参数求偏导得到

∂E(w,b)∂wj∂E(w,b)∂b=2∑i=12[(w1x1i+w2x2i+b)−yi]xji=[(w1x1+w2x21+b)−y1]xj1+[(w1x2+w2x22+b)−y2]xj2=2∑i=12[(w1x1i+w2x2i+b)−yi]=[(w1x1+w2x21+b)−y1]+[(w1x2+w2x22+b)−y2]

∂E(w,b)∂wj=2∑i=12[(w1xi1+w2xi2+b)−yi]xij=[(w1x1+w2x12+b)−y1]x1j+[(w1x2+w2x22+b)−y2]x2j∂E(w,b)∂b=2∑i=12[(w1xi1+w2xi2+b)−yi]=[(w1x1+w2x12+b)−y1]+[(w1x2+w2x22+b)−y2]

将点(2,3),(5,8)(2,3),(5,8)带入方程,可以得到3个方程,

2b+7w1+29w2=117b+29w1+133w2=4629b+133w1+641w2=212

2b+7w1+29w2=117b+29w1+133w2=4629b+133w1+641w2=212

联立这三个方程求解,发现有无穷多的解,只能得到3w1+21w2=53w1+21w2=5,这三个方程是线性相关的,故没有唯一解。

  该方法通过求偏导,再联立方程求解,比较复杂,看着也很不美观。那么有没有更加方便的方法呢?

3.2 最小二乘法

   其实求解该最优化问题(平方和的最小值)一般会采用最小二乘法(其实最小二乘法和求偏导再联立方程求解的方法无本质区别,求偏导也是最小二乘法,只是这里介绍最小二乘的矩阵形式而已)。最小二乘法(least squares),从英文名非常容易想到,该方法就是求解平方和的最小值的方法。

  可以将误差函数以矩阵的表示(NN个点,最高MM阶)为:

∥Xw−y∥2

‖Xw−y‖2

其中,把偏置bb融合到了参数ww中,

w={b,w1,w2,...,wM}

w={b,w1,w2,...,wM}

XX则表示输入矩阵,

⎡⎣⎢⎢⎢⎢11...1x1x2...xNx21x22...x2N............xM1xM2...xMN⎤⎦⎥⎥⎥⎥

[1x1x12...x1M1x2x22...x2M...............1xNxN2...xNM]

yy则表示标注向量,

y={y1,y2,...,yN}T

y={y1,y2,...,yN}T

因此,最优化问题可以重新表示为

minw∥Xw−y∥2

minw‖Xw−y‖2

对其求导,

∂∥Xw−y∥2∂w=∂(Xw−y)T(Xw−y)∂w=∂(wTXT−yT)(Xw−y)∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w

∂‖Xw−y‖2∂w=∂(Xw−y)T(Xw−y)∂w=∂(wTXT−yT)(Xw−y)∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w

在继续对其求导之前,需要先补充一些矩阵求导的先验知识(常见的一些矩阵求导公式可以参见转载的博客),如下:

∂xTa∂x=a∂ax∂x=aT∂xTA∂x=Ax+ATx

∂xTa∂x=a∂ax∂x=aT∂xTA∂x=Ax+ATx

根据上面的矩阵求导规则,继续进行损失函数的求导

∂∥Xw−y∥2∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w=XTXw+(XTX)Tw−(yTX)T−XTy=2XTXw−2XTy

∂‖Xw−y‖2∂w=∂(wTXTXw−yTXw−wTXTy+yTy)∂w=XTXw+(XTX)Tw−(yTX)T−XTy=2XTXw−2XTy

其中XTXw=(XTX)TwXTXw=(XTX)Tw.令求导结果等于0,即可以求导问题的最小值。

2XTXw−2XTy=0w=(XTX)−1XTy

2XTXw−2XTy=0w=(XTX)−1XTy

  再利用最小二乘法的矩阵形式对前面的例子进行求解,用二阶多项式拟合即两个点(2,3),(5,8)(2,3),(5,8)。

表示输入矩阵 XX和标签向量yy

X=[1125425]y=[38]T

X=[1241525]y=[38]T

计算XTXXTX

XTX=⎡⎣⎢272972913329133641⎤⎦⎥

XTX=[272972913329133641]

矩阵求逆,再做矩阵乘法运算

但 XTXXTX不可逆,故无唯一解。

  关于矩阵的逆是否存在,可以通过判断矩阵的行列式是否为0(det(A)=?0det(A)=?0 来判断,也可以通过初等行变换,观察矩阵的行向量是否线性相关,在这个例子下,矩阵不可逆,故有无穷多解。但如果新增一个点(4,7)(4,7),则就可以解了。

  其实这和数据集的点数和选择的阶数有关,如果点数小于阶数则会出现无穷解的情况,如果点数等于阶数,那么刚好有解可以完全拟合所有数据点,如果点数大于阶数,则会求的近似解。

  那么对于点数小于阶数的情况,如何求解?在python的多项式拟合函数中是可以拟合的,而且效果不错,具体算法不是很了解,可以想办法参考python的ployfit()函数的实现。

4. 拟合阶数的选择

   在前面的推导中,多项式的阶数被固定了,那么实际场景下应该如何选择合适的阶数MM呢?

一般会选择阶数MM小于点数NN

把训练数据分为训练集合验证集,在训练集上,同时用不同的MM值训练多个模型,然后选择在验证集误差最小的阶数script type="math/tex" id="MathJax-Element-5573"M/script

Python 中的函数拟合

很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)

本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。

通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。

运行结果:

对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。

运行结果:

python 拉格朗日插值 不能超过多少个值

拉格朗日插值Python代码实现

1. 数学原理

对某个多项式函数有已知的k+1个点,假设任意两个不同的都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个lj(x)为拉格朗日基本多项式(或称插值基函数),其表达式为:

2. 轻量级实现

利用

直接编写程序,可以直接插值,并且得到对应的函数值。但是不能得到系数,也不能对其进行各项运算。

123456789101112

def h(x,y,a):    ans=0.0    for i in range(len(y)):        t=y[i]        for j in range(len(y)):            if i !=j:                t*=(a-x[j])/(x[i]-x[j])        ans +=t    return ansx=[1,0]y=[0,2]print(h(x,y,2))

上述代码中,h(x,y,a)就是插值函数,直接调用就行。参数说明如下:

x,y分别是对应点的x值和y值。具体详解下解释。

a为想要取得的函数的值。

事实上,最简单的拉格朗日插值就是两点式得到的一条直线。

例如:

p点(1,0)q点(0,2)

这两个点决定了一条直线,所以当x=2的时候,y应该是-2

该代码就是利用这两个点插值,然后a作为x=2调用函数验证的。

3. 引用库

3.1 库的安装

主要依赖与 scipy。官方网站见:

安装的方法很简单,就是使用pip install scipy 如果失败,则将whl文件下载到本地再利用命令进行安装。

可能如果没有安装numpy

3.2 库的使用

from scipy.interplotate import lagrange

直接调用lagrange(x,y)这个函数即可,返回 一个对象。

参数x,y分别是对应各个点的x值和y值。

例如:(1,2) (3,5) (5,9)这三个点,作为函数输入应该这么写:

x=[1,3,5]

y =[2, 5, 9]

a=lagrange(x,y)

直接输出该对象,就能看到插值的函数。

利用该对象,能得到很多特性。具体参见:

a.order得到阶

a[]得到系数

a()得到对应函数值

此外可以对其进行加减乘除运算

3.3 代码实现

1234567   from scipy.interpolate import lagrangex=[1,2,3,4,7]y=[5,7,10,3,9]a=lagrange(x,y)print(a)print(a(1),a(2),a(3))print(a[0],a[2],a[3])   

结果是:

class 'numpy.lib.polynomial.poly1d' 4

4            3              2

0.5472 x - 7.306 x + 30.65 x - 47.03 x + 28.13

5.0 7.0 10.0

28.1333333333 30.6527777778 -7.30555555556

解释:

class 'numpy.lib.polynomial.poly1d' 4

这一行是输出a的类型,以及最高次幂。

4            3              2

0.5472 x - 7.306 x + 30.65 x - 47.03 x + 28.13

第二行和第三行就是插值的结果,显示出的函数。

第二行的数字是对应下午的x的幂,如果对应不齐,则是排版问题。

5.0 7.0 10.0

第四行是代入的x值,得到的结果。

也就是说,用小括号f(x)的这种形式,可以直接得到计算结果。

28.1333333333 30.6527777778 -7.30555555556

python中有没有求legendre多项式的解的函数

他们以后被命名 Adrien-Marie Legendre. 这 常微分方程 频繁地运用到 物理 并且其他技术领域。 特别是当在球状坐标解决 Laplace的等式 (和关连 偏微分方程) 时.

Legendre微分方程也许使用标准解决 电源串联 方法。 等式有 规则单一点 在 x= ± 1如此,级数解关于起源只将一般来说,聚合为 |x| 1. 当 n是整数,解答Pn是规则的(x) x=1也是正规兵在 x=-1和系列为这种解答终止(即。 是多项式)。


当前题目:多项式函数Python的简单介绍
转载来源:http://6mz.cn/article/hdidhp.html

其他资讯