十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快,所以可以应对高并发。
元江县网站建设公司创新互联建站,元江县网站设计制作,有大型网站制作公司丰富经验。已为元江县1000多家提供企业网站建设服务。企业网站搭建\成都外贸网站建设要多少钱,请找那个售后服务好的元江县做网站的公司定做!
2.增加带宽和机器性能,1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下,大带宽,多核cpu,高内存是一个解决方案。
3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了。
简单说些常用技术,负载均衡,限流,加速器等
大数据的话可以进行以下操作:
减少对数据库的读取,也就是减少调用数据库,
进行数据缓存,
利用数据库的自身优化技术,如索引等
精确查询条件,有利于提高查找速度
理论上是可以的,但效率上就有问题了,这么大量的数据一般不会放一张表里面,都会考虑分表,然后考虑索引、数据库主从、服务器配置等,提高查询效率php+mysql可以处理亿级的数据吗
redis能不能有效要看程序能否优化
确实需要占用大量内存的话 建议不常用的数据使用硬盘存储
首先是向了解PHP呢还是大数据呢?不过想都拿下的话,不是一朝一夕的,步子迈得太大,不好,技在于精而后于多。
先说PHP:最基本其实就是web前端基础;第二的话包括PHP语言基础、Ajax、数据库强化、运行环境及配置、面向对象OOADUML等;第三就是主流框架的掌握了,Smarty、PDO等
再说大数据:
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。