十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
冒泡排序是比较经典的排序算法。代码如下:
在新抚等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计、网站建设 网站设计制作按需求定制制作,公司网站建设,企业网站建设,品牌网站建设,营销型网站建设,成都外贸网站制作,新抚网站建设费用合理。
for(int i=1;iarr.length;i++){
for(int j=1;jarr.length-i;j++){
//交换位置
}
拓展资料:
原理:比较两个相邻的元素,将值大的元素交换至右端。
思路:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。重复第一趟步骤,直至全部排序完成。
第一趟比较完成后,最后一个数一定是数组中最大的一个数,所以第二趟比较的时候最后一个数不参与比较;
第二趟比较完成后,倒数第二个数也一定是数组中第二大的数,所以第三趟比较的时候最后两个数不参与比较;
依次类推,每一趟比较次数-1;
……
举例说明:要排序数组:int[] arr={6,3,8,2,9,1};
for(int i=1;iarr.length;i++){
for(int j=1;jarr.length-i;j++){
//交换位置
}
参考资料:冒泡排序原理
方法一: package basic.javastu; public class NumberTest {
/** * 实现冒泡程序1 */ public static void main(String[] args) { // TODO Auto-generated method stub
int[] numb=new int[]{3,42,57,1,32,24};
int len=numb.length;
int i,j;
int temp;
System.out.println("排序前的数组各个值:");
for(i=0;ilen;i++)
{
System.out.print(numb[i]+"\t");
}
System.out.println("\n");
for(i=1;i=len;i++)
{
for(j=len-1;j=1;j--)
{
if(numb[j]numb[j-1])
{
temp=numb[j];
numb[j]=numb[j-1];
numb[j-1]=temp;
}
}
}
System.out.println("排序后的数组各个值:");
for(i=0;ilen;i++)
{
System.out.print(numb[i]+"\t");
}
}
}
方法二: package basic.javastu; public class NumberTest2 {
/** * 实现冒泡程序2 */ public static void main(String[] args) { // TODO Auto-generated method stub
int[] numb=new int[]{3,42,57,1,32,24};
int leng=numb.length;
System.out.println("排序前的数组各个值:");
for(int i=0;ileng;i++)
{
System.out.print(numb[i]+"\t");
}
System.out.println("\n");
swap(numb);
System.out.println("数组排序后:"); for(int i=0;ileng;i++)
{
System.out.print(numb[i]+"\t");
} }
private static int[] swap(int[] numb) { int n2[]=numb; int len=n2.length; int i,j; int temp; for(i=1;i=len;i++)
{
for(j=len-1;j=1;j--)
{
if(n2[j]n2[j-1])
{
temp=n2[j];
n2[j]=n2[j-1];
n2[j-1]=temp;
}
}
} return n2; } }
方法三: package basic.javastu; public class NumberTest3 {
/** * 实现冒泡程序2 */ public static void main(String[] args) { // TODO Auto-generated method stub
int[] numb=new int[]{3,42,57,1,32,24};
int leng=numb.length;
System.out.println("排序前的数组各个值:");
for(int i=0;ileng;i++)
{
System.out.print(numb[i]+"\t");
}
System.out.println("\n");
swap(numb);
System.out.println("数组排序后:"); for(int i=0;ileng;i++)
{
System.out.print(numb[i]+"\t");
} }
private static void swap(int[] numb) { int len=numb.length; int i,j; int temp; for(i=1;i=len;i++)
{
for(j=len-1;j=1;j--)
{
if(numb[j]numb[j-1])
{
temp=numb[j];
numb[j]=numb[j-1];
numb[j-1]=temp;
}
}
} } }
// 排序
public class Array
{
public static int[] random(int n) //产生n个随机数,返回整型数组
{
if (n0)
{
int table[] = new int[n];
for (int i=0; itable.length; i++)
table[i] = (int)(Math.random()*100); //产生一个0~100之间的随机数
return table; //返回一个数组
}
return null;
}
public static void print(int[] table) //输出数组元素
{
if (table!=null)
for (int i=0; itable.length; i++)
System.out.print(" "+table[i]);
System.out.println();
}
public static void insertSort(int[] table) //直接插入排序
{ //数组是引用类型,元素值将被改变
System.out.println("直接插入排序");
for (int i=1; itable.length; i++) //n-1趟扫描
{
int temp=table[i], j; //每趟将table[i]插入到前面已排序的序列中
// System.out.print("移动");
for (j=i-1; j-1 temptable[j]; j--) //将前面较大元素向后移动
{
// System.out.print(table[j]+", ");
table[j+1] = table[j];
}
table[j+1] = temp; //temp值到达插入位置
System.out.print("第"+i+"趟: ");
print(table);
}
}
public static void shellSort(int[] table) //希尔排序
{
System.out.println("希尔排序");
for (int delta=table.length/2; delta0; delta/=2) //控制增量,增量减半,若干趟扫描
{
for (int i=delta; itable.length; i++) //一趟中若干组,每个元素在自己所属组内进行直接插入排序
{
int temp = table[i]; //当前待插入元素
int j=i-delta; //相距delta远
while (j=0 temptable[j]) //一组中前面较大的元素向后移动
{
table[j+delta] = table[j];
j-=delta; //继续与前面的元素比较
}
table[j+delta] = temp; //插入元素位置
}
System.out.print("delta="+delta+" ");
print(table);
}
}
private static void swap(int[] table, int i, int j) //交换数组中下标为i、j的元素
{
if (i=0 itable.length j=0 jtable.length i!=j) //判断i、j是否越界
{
int temp = table[j];
table[j] = table[i];
table[i] = temp;
}
}
public static void bubbleSort(int[] table) //冒泡排序
{
System.out.println("冒泡排序");
boolean exchange=true; //是否交换的标记
for (int i=1; itable.length exchange; i++) //有交换时再进行下一趟,最多n-1趟
{
exchange=false; //假定元素未交换
for (int j=0; jtable.length-i; j++) //一次比较、交换
if (table[j]table[j+1]) //反序时,交换
{
int temp = table[j];
table[j] = table[j+1];
table[j+1] = temp;
exchange=true; //有交换
}
System.out.print("第"+i+"趟: ");
print(table);
}
}
public static void quickSort(int[] table) //快速排序
{
quickSort(table, 0, table.length-1);
}
private static void quickSort(int[] table, int low, int high) //一趟快速排序,递归算法
{ //low、high指定序列的下界和上界
if (lowhigh) //序列有效
{
int i=low, j=high;
int vot=table[i]; //第一个值作为基准值
while (i!=j) //一趟排序
{
while (ij vot=table[j]) //从后向前寻找较小值
j--;
if (ij)
{
table[i]=table[j]; //较小元素向前移动
i++;
}
while (ij table[i]vot) //从前向后寻找较大值
i++;
if (ij)
{
table[j]=table[i]; //较大元素向后移动
j--;
}
}
table[i]=vot; //基准值的最终位置
System.out.print(low+".."+high+", vot="+vot+" ");
print(table);
quickSort(table, low, j-1); //前端子序列再排序
quickSort(table, i+1, high); //后端子序列再排序
}
}
public static void selectSort(int[] table) //直接选择排序
{
System.out.println("直接选择排序");
for (int i=0; itable.length-1; i++) //n-1趟排序
{ //每趟在从table[i]开始的子序列中寻找最小元素
int min=i; //设第i个数据元素最小
for (int j=i+1; jtable.length; j++) //在子序列中查找最小值
if (table[j]table[min])
min = j; //记住最小元素下标
if (min!=i) //将本趟最小元素交换到前边
{
int temp = table[i];
table[i] = table[min];
table[min] = temp;
}
System.out.print("第"+i+"趟: ");
print(table);
}
}
private static void sift(int[] table, int low, int high) //将以low为根的子树调整成最小堆
{ //low、high是序列下界和上界
int i=low; //子树的根
int j=2*i+1; //j为i结点的左孩子
int temp=table[i]; //获得第i个元素的值
while (j=high) //沿较小值孩子结点向下筛选
{
if (jhigh table[j]table[j+1]) //数组元素比较(改成为最大堆)
j++; //j为左右孩子的较小者
if (temptable[j]) //若父母结点值较大(改成为最大堆)
{
table[i]=table[j]; //孩子结点中的较小值上移
i=j; //i、j向下一层
j=2*i+1;
}
else
j=high+1; //退出循环
}
table[i]=temp; //当前子树的原根值调整后的位置
System.out.print("sift "+low+".."+high+" ");
print(table);
}
public static void heapSort(int[] table)
{
System.out.println("堆排序");
int n=table.length;
for (int j=n/2-1; j=0; j--) //创建最小堆
sift(table, j, n-1);
// System.out.println("最小堆? "+isMinHeap(table));
for (int j=n-1; j0; j--) //每趟将最小值交换到后面,再调整成堆
{
int temp = table[0];
table[0] = table[j];
table[j] = temp;
sift(table, 0, j-1);
}
}
public static void mergeSort(int[] X) //归并排序
{
System.out.println("归并排序");
int n=1; //已排序的子序列长度,初值为1
int[] Y = new int[X.length]; //Y数组长度同X数组
do
{
mergepass(X, Y, n); //一趟归并,将X数组中各子序列归并到Y中
print(Y);
n*=2; //子序列长度加倍
if (nX.length)
{
mergepass(Y, X, n); //将Y数组中各子序列再归并到X中
print(X);
n*=2;
}
} while (nX.length);
}
private static void mergepass(int[] X, int[] Y, int n) //一趟归并
{
System.out.print("子序列长度n="+n+" ");
int i=0;
while (iX.length-2*n+1)
{
merge(X,Y,i,i+n,n);
i += 2*n;
}
if (i+nX.length)
merge(X,Y,i,i+n,n); //再一次归并
else
for (int j=i; jX.length; j++) //将X剩余元素复制到Y中
Y[j]=X[j];
}
private static void merge(int[] X, int[] Y, int m, int r, int n) //一次归并
{
int i=m, j=r, k=m;
while (ir jr+n jX.length) //将X中两个相邻子序列归并到Y中
if (X[i]X[j]) //较小值复制到Y中
Y[k++]=X[i++];
else
Y[k++]=X[j++];
while (ir) //将前一个子序列剩余元素复制到Y中
Y[k++]=X[i++];
while (jr+n jX.length) //将后一个子序列剩余元素复制到Y中
Y[k++]=X[j++];
}
public static void main(String[] args)
{
// int[] table = {52,26,97,19,66,8,49};//Array.random(9);{49,65,13,81,76,97,38,49};////{85,12,36,24,47,30,53,91,76};//;//{4,5,8,1,2,7,3,6};// {32,26,87,72,26,17};//
int[] table = {13,27,38,49,97,76,49,81}; //最小堆
System.out.print("关键字序列: ");
Array.print(table);
// Array.insertSort(table);
// Array.shellSort(table);
// Array.bubbleSort(table);
// Array.quickSort(table);
// Array.selectSort(table);
// Array.heapSort(table);
// Array.mergeSort(table);
System.out.println("最小堆序列? "+Array.isMinHeap(table));
}
//第9章习题
public static boolean isMinHeap(int[] table) //判断一个数据序列是否为最小堆
{
if (table==null)
return false;
int i = table.length/2 -1; //最深一棵子树的根结点
while (i=0)
{
int j=2*i+1; //左孩子
if (jtable.length)
if (table[i]table[j])
return false;
else
if (j+1table.length table[i]table[j+1]) //右孩子
return false;
i--;
}
return true;
}
}
/*
程序运行结果如下:
关键字序列: 32 26 87 72 26 17 8 40
直接插入排序
第1趟排序: 26 32 87 72 26 17 8 40
第2趟排序: 26 32 87 72 26 17 8 40
第3趟排序: 26 32 72 87 26 17 8 40
第4趟排序: 26 26 32 72 87 17 8 40 //排序算法稳定
第5趟排序: 17 26 26 32 72 87 8 40
第6趟排序: 8 17 26 26 32 72 87 40
第7趟排序: 8 17 26 26 32 40 72 87
关键字序列: 42 1 74 25 45 29 87 53
直接插入排序
第1趟排序: 1 42 74 25 45 29 87 53
第2趟排序: 1 42 74 25 45 29 87 53
第3趟排序: 1 25 42 74 45 29 87 53
第4趟排序: 1 25 42 45 74 29 87 53
第5趟排序: 1 25 29 42 45 74 87 53
第6趟排序: 1 25 29 42 45 74 87 53
第7趟排序: 1 25 29 42 45 53 74 87
关键字序列: 21 12 2 40 99 97 68 57
直接插入排序
第1趟排序: 12 21 2 40 99 97 68 57
第2趟排序: 2 12 21 40 99 97 68 57
第3趟排序: 2 12 21 40 99 97 68 57
第4趟排序: 2 12 21 40 99 97 68 57
第5趟排序: 2 12 21 40 97 99 68 57
第6趟排序: 2 12 21 40 68 97 99 57
第7趟排序: 2 12 21 40 57 68 97 99
关键字序列: 27 38 65 97 76 13 27 49 55 4
希尔排序
delta=5 13 27 49 55 4 27 38 65 97 76
delta=2 4 27 13 27 38 55 49 65 97 76
delta=1 4 13 27 27 38 49 55 65 76 97
关键字序列: 49 38 65 97 76 13 27 49 55 4 //严书
希尔排序
delta=5 13 27 49 55 4 49 38 65 97 76
delta=2 4 27 13 49 38 55 49 65 97 76 //与严书不同
delta=1 4 13 27 38 49 49 55 65 76 97
关键字序列: 65 34 25 87 12 38 56 46 14 77 92 23
希尔排序
delta=6 56 34 14 77 12 23 65 46 25 87 92 38
delta=3 56 12 14 65 34 23 77 46 25 87 92 38
delta=1 12 14 23 25 34 38 46 56 65 77 87 92
关键字序列: 84 12 43 62 86 7 90 91
希尔排序
delta=4 84 7 43 62 86 12 90 91
delta=2 43 7 84 12 86 62 90 91
delta=1 7 12 43 62 84 86 90 91
关键字序列: 32 26 87 72 26 17
冒泡排序
第1趟排序: 26 32 72 26 17 87
第2趟排序: 26 32 26 17 72 87
第3趟排序: 26 26 17 32 72 87
第4趟排序: 26 17 26 32 72 87
第5趟排序: 17 26 26 32 72 87
关键字序列: 1 2 3 4 5 6 7 8
冒泡排序
第1趟排序: 1 2 3 4 5 6 7 8
关键字序列: 1 3 2 4 5 8 6 7
冒泡排序
第1趟排序: 1 2 3 4 5 6 7 8
第2趟排序: 1 2 3 4 5 6 7 8
关键字序列: 4 5 8 1 2 7 3 6
冒泡排序
第1趟排序: 4 5 1 2 7 3 6 8
第2趟排序: 4 1 2 5 3 6 7 8
第3趟排序: 1 2 4 3 5 6 7 8
第4趟排序: 1 2 3 4 5 6 7 8
第5趟排序: 1 2 3 4 5 6 7 8
关键字序列: 38 26 97 19 66 1 5 49
0..7, vot=38 5 26 1 19 38 66 97 49
0..3, vot=5 1 5 26 19 38 66 97 49
2..3, vot=26 1 5 19 26 38 66 97 49
5..7, vot=66 1 5 19 26 38 49 66 97
关键字序列: 38 5 49 26 19 97 1 66
0..7, vot=38 1 5 19 26 38 97 49 66
0..3, vot=1 1 5 19 26 38 97 49 66
1..3, vot=5 1 5 19 26 38 97 49 66
2..3, vot=19 1 5 19 26 38 97 49 66
5..7, vot=97 1 5 19 26 38 66 49 97
5..6, vot=66 1 5 19 26 38 49 66 97
关键字序列: 49 38 65 97 76 13 27 49
0..7, vot=49 49 38 27 13 49 76 97 65
0..3, vot=49 13 38 27 49 49 76 97 65
0..2, vot=13 13 38 27 49 49 76 97 65
1..2, vot=38 13 27 38 49 49 76 97 65
5..7, vot=76 13 27 38 49 49 65 76 97
关键字序列: 27 38 65 97 76 13 27 49 55 4
low=0 high=9 vot=27 4 27 13 27 76 97 65 49 55 38
low=0 high=2 vot=4 4 27 13 27 76 97 65 49 55 38
low=1 high=2 vot=27 4 13 27 27 76 97 65 49 55 38
low=4 high=9 vot=76 4 13 27 27 38 55 65 49 76 97
low=4 high=7 vot=38 4 13 27 27 38 55 65 49 76 97
low=5 high=7 vot=55 4 13 27 27 38 49 55 65 76 97
关键字序列: 38 26 97 19 66 1 5 49
直接选择排序
第0趟排序: 1 26 97 19 66 38 5 49
第1趟排序: 1 5 97 19 66 38 26 49
第2趟排序: 1 5 19 97 66 38 26 49
第3趟排序: 1 5 19 26 66 38 97 49
第4趟排序: 1 5 19 26 38 66 97 49
第5趟排序: 1 5 19 26 38 49 97 66
第6趟排序: 1 5 19 26 38 49 66 97
最小堆
关键字序列: 81 49 76 27 97 38 49 13 65
sift 3..8 81 49 76 13 97 38 49 27 65
sift 2..8 81 49 38 13 97 76 49 27 65
sift 1..8 81 13 38 27 97 76 49 49 65
sift 0..8 13 27 38 49 97 76 49 81 65
13 27 38 49 97 76 49 81 65
sift 0..7 27 49 38 65 97 76 49 81 13
sift 0..6 38 49 49 65 97 76 81 27 13
sift 0..5 49 65 49 81 97 76 38 27 13
sift 0..4 49 65 76 81 97 49 38 27 13
sift 0..3 65 81 76 97 49 49 38 27 13
sift 0..2 76 81 97 65 49 49 38 27 13
sift 0..1 81 97 76 65 49 49 38 27 13
sift 0..0 97 81 76 65 49 49 38 27 13
最大堆
关键字序列: 49 65 13 81 76 27 97 38 49
sift 3..8 49 65 13 81 76 27 97 38 49
sift 2..8 49 65 97 81 76 27 13 38 49
sift 1..8 49 81 97 65 76 27 13 38 49
sift 0..8 97 81 49 65 76 27 13 38 49
97 81 49 65 76 27 13 38 49
sift 0..7 81 76 49 65 49 27 13 38 97
sift 0..6 76 65 49 38 49 27 13 81 97
sift 0..5 65 49 49 38 13 27 76 81 97
sift 0..4 49 38 49 27 13 65 76 81 97
sift 0..3 49 38 13 27 49 65 76 81 97
sift 0..2 38 27 13 49 49 65 76 81 97
sift 0..1 27 13 38 49 49 65 76 81 97
sift 0..0 13 27 38 49 49 65 76 81 97
关键字序列: 52 26 97 19 66 8 49
归并排序
子序列长度n=1 26 52 19 97 8 66 49
子序列长度n=2 19 26 52 97 8 49 66
子序列长度n=4 8 19 26 49 52 66 97
关键字序列: 13 27 38 49 97 76 49 81 65
最小堆序列? true
*/
/*
首先我们要先了解冒泡排序的原理!
冒泡排序:
每一轮选择两个相邻数据进行比较,满足条件交换位置,每一轮确定一个数的最终位置(这里我们假设从小到大排,那么每轮就是确定最大一个数的位置)
*/
public static void maoPao(int []arr)
{
//外层循环,控制比较的轮数。arr.length-1:比较的轮数永远比数组的长度少1(例如,3个数我们比较两次就能知道最大值是谁,4个数比较3次,5个四次,以此类推)
for(int i=0;iarr.length-1;i++)
{
//内层循环控制每一轮比较的次数。arr.length-1-i:下一轮比较次数比上一轮少1(通过分析我们不难得出,第一轮比较arr.length-1次(此时i=0),第二轮比较arr.length-1-1(此时i=1),一次类推,每轮减少比较的次数正好就是i的值,所以内层循环比较次数为arr.length-1-i)
for(int j=0;jarr.length-1-i;j++)
{
//相邻的两个元素进行比较,满足条件交换位置
if(arr[j]arr[j+1])
{
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}
/*
下边是一张比较图,对数组[34,456,67,78,34,23,67]进行冒泡排序
第一轮,通过比较,相邻交换,我们确定了最大值456的位置,那么第二轮456就不用再参与比较了;
以此类推,最后一轮正好比较第一个和第二个的位置,这样就最终确定了整个数组元素的大小顺序。
而这个比较过程就像在水中放一堆小球,越重的就越靠近水底,越轻的就越靠近水面一样,整个过程交换并排序的过程就像是水中的气泡从底向上溢的过程,所以称作冒泡排序。
最后,总结一点,所有涉及for循环排序的题目,都记住一句话:外层循环控制比较轮数(所有元素比较一遍,称为一轮),内层循环控每轮比较的次数。我们所要做的就是建立好外层循环和内层循环之间的关系(就像这里的i一样,内外层循环共用了,但它在内外层循环的作用是不一样的)
简单的实现排序,可以参考如下的代码
import java.text.Collator;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Locale;
public class PYDemo {
public static void main(String[] args) {
String[] names= {"赵z子z龙l","刘l备b","关g羽y","张z飞f"};
System.out.println("排序前"+Arrays.toString(names));
Comparator cpt = Collator.getInstance(Locale.CHINA);
Arrays.sort(names, cpt);
System.out.println("排序后"+Arrays.toString(names));
}
}
测试输出
排序前[赵z子z龙l, 刘l备b, 关g羽y, 张z飞f]
排序后[关g羽y, 刘l备b, 张z飞f, 赵z子z龙l]
如果有一些非常用的汉字,生僻字等,建议使用一些jar包实现,比如pinyin4j
快速排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class QuickSort implements SortUtil.Sort{
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
quickSort(data,0,data.length-1);
}
private void quickSort(int[] data,int i,int j){
int pivotIndex=(i+j)/2;
//swap
SortUtil.swap(data,pivotIndex,j);
int k=partition(data,i-1,j,data[j]);
SortUtil.swap(data,k,j);
if((k-i)1) quickSort(data,i,k-1);
if((j-k)1) quickSort(data,k+1,j);
}
/**
* @param data
* @param i
* @param j
* @return
*/
private int partition(int[] data, int l, int r,int pivot) {
do{
while(data[++l]pivot);
while((r!=0)data[--r]pivot);
SortUtil.swap(data,l,r);
}
while(lr);
SortUtil.swap(data,l,r);
return l;
}
}
改进后的快速排序:
package org.rut.util.algorithm.support;
import org.rut.util.algorithm.SortUtil;
/**
* @author treeroot
* @since 2006-2-2
* @version 1.0
*/
public class ImprovedQuickSort implements SortUtil.Sort {
private static int MAX_STACK_SIZE=4096;
private static int THRESHOLD=10;
/* (non-Javadoc)
* @see org.rut.util.algorithm.SortUtil.Sort#sort(int[])
*/
public void sort(int[] data) {
int[] stack=new int[MAX_STACK_SIZE];
int top=-1;
int pivot;
int pivotIndex,l,r;
stack[++top]=0;
stack[++top]=data.length-1;
while(top0){
int j=stack[top--];
int i=stack[top--];
pivotIndex=(i+j)/2;
pivot=data[pivotIndex];
SortUtil.swap(data,pivotIndex,j);
//partition
l=i-1;
r=j;
do{
while(data[++l]pivot);
while((r!=0)(data[--r]pivot));
SortUtil.swap(data,l,r);
}
while(lr);
SortUtil.swap(data,l,r);
SortUtil.swap(data,l,j);
if((l-i)THRESHOLD){
stack[++top]=i;
stack[++top]=l-1;
}
if((j-l)THRESHOLD){
stack[++top]=l+1;
stack[++top]=j;
}
}
//new InsertSort().sort(data);
insertSort(data);
}
/**
* @param data
*/
private void insertSort(int[] data) {
int temp;
for(int i=1;idata.length;i++){
for(int j=i;(j0)(data[j]data[j-1]);j--){
SortUtil.swap(data,j,j-1);
}
}
}
}