快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

nosql存文件,noSQL数据库

nosql数据库的四种类型

一般将NoSQL数据库分为四大类:键值(Key-Value)存储数据库、列存储数据库、文档型数据库和图形(Graph)数据库。它们的数据模型、优缺点、典型应用场景。

富蕴网站建设公司创新互联公司,富蕴网站设计制作,有大型网站制作公司丰富经验。已为富蕴上千多家提供企业网站建设服务。企业网站搭建\成都外贸网站建设公司要多少钱,请找那个售后服务好的富蕴做网站的公司定做!

键值(Key-Value)存储数据库Key指向Value的键值对,通常用hash表来实现查找速度快数据无结构化(通常只被当作字符串或者二进制数据)内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等。

列存储数据库,以列簇式存储,将同一列数据存在一起查找速度快,可扩展性强,更容易进行分布式扩展功能相对局限分布式的文件系统。

文档型数据库,Key-Value对应的键值对,Value为结构化数据,数据结构要求不严格,表结构可变(不需要像关系型数据库一样需预先定义表结构),查询性能不高,而且缺乏统一的查询语法,Web应用。

图形(Graph)数据库,图结构,利用图结构相关算法(如最短路径寻址,N度关系查找等),很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案,社交网络,推荐系统等。

互联网如何海量存储数据?

目前存储海量数据的技术主要包括NoSQL、分布式文件系统、和传统关系型数据库。随着互联网行业不断的发展,产生的数据量越来越多,并且这些数据的特点是半结构化和非结构化,数据很可能是不精确的,易变的。这样传统关系型数据库就无法发挥它的优势。因此,目前互联网行业偏向于使用NoSQL和分布式文件系统来存储海量数据。

下面介绍下常用的NoSQL和分布式文件系统。

NoSQL

互联网行业常用的NoSQL有:HBase、MongoDB、Couchbase、LevelDB。

HBase是Apache Hadoop的子项目,理论依据为Google论文 Bigtable: A Distributed Storage System for Structured Data开发的。HBase适合存储半结构化或非结构化的数据。HBase的数据模型是稀疏的、分布式的、持久稳固的多维map。HBase也有行和列的概念,这是与RDBMS相同的地方,但却又不同。HBase底层采用HDFS作为文件系统,具有高可靠性、高性能。

MongoDB是一种支持高性能数据存储的开源文档型数据库。支持嵌入式数据模型以减少对数据库系统的I/O、利用索引实现快速查询,并且嵌入式文档和集合也支持索引,它复制能力被称作复制集(replica set),提供了自动的故障迁移和数据冗余。MongoDB的分片策略将数据分布在服务器集群上。

Couchbase这种NoSQL有三个重要的组件:Couchbase服务器、Couchbase Gateway、Couchbase Lite。Couchbase服务器,支持横向扩展,面向文档的数据库,支持键值操作,类似于SQL查询和内置的全文搜索;Couchbase Gateway提供了用于RESTful和流式访问数据的应用层API。Couchbase Lite是一款面向移动设备和“边缘”系统的嵌入式数据库。Couchbase支持千万级海量数据存储

分布式文件系统

如果针对单个大文件,譬如超过100MB的文件,使用NoSQL存储就不适当了。使用分布式文件系统的优势在于,分布式文件系统隔离底层数据存储和分布的细节,展示给用户的是一个统一的逻辑视图。常用的分布式文件系统有Google File System、HDFS、MooseFS、Ceph、GlusterFS、Lustre等。

相比过去打电话、发短信、用彩铃的“老三样”,移动互联网的发展使得人们可以随时随地通过刷微博、看视频、微信聊天、浏览网页、地图导航、网上购物、外卖订餐等,这些业务的海量数据都构建在大规模网络云资源池之上。当14亿中国人把衣食住行搬上移动互联网的同时,也给网络云资源池带来巨大业务挑战。

首先,用户需求动态变化,传统业务流量主要是端到端模式,较为稳定;而互联网流量易受热点内容牵引,数据流量流向复杂和规模多变:比如双十一购物狂潮,电商平台订单创建峰值达到58.3万笔,要求通信网络提供高并发支持;又如优酷春节期间有超过23亿人次上网刷剧、抖音拜年短视频增长超10倍,需要通信网络能够灵活扩充带宽。面对用户动态多变的需求,通信网络需要具备快速洞察和响应用户需求的能力,提供高效、弹性、智能的数据服务。

“随着通信网络管道十倍百倍加粗、节点数从千万级逐渐跃升至百亿千亿级,如何‘接得住、存得下’海量数据,成为网络云资源池建设面临的巨大考验”,李辉表示。一直以来,作为新数据存储首倡者和引领者,浪潮存储携手通信行业用户,不断 探索 提速通信网络云基础设施的各种姿势。

早在2018年,浪潮存储就参与了通信行业基础设施建设,四年内累计交付约5000套存储产品,涵盖全闪存储、高端存储、分布式存储等明星产品。其中在网络云建设中,浪潮存储已连续两年两次中标全球最大的NFV网络云项目,其中在网络云二期建设中,浪潮存储提供数千节点,为上层网元、应用提供高效数据服务。在最新的NFV三期项目中,浪潮存储也已中标。

能够与通信用户在网络云建设中多次握手,背后是浪潮存储的持续技术投入与创新。浪潮存储6年内投入超30亿研发经费,开发了业界首个“多合一”极简架构的浪潮并行融合存储系统。此存储系统能够统筹管理数千个节点,实现性能、容量线性扩展;同时基于浪潮iTurbo智能加速引擎的智能IO均衡、智能资源调度、智能元数据管理等功能,与自研NVMe SSD闪存盘进行系统级别联调优化,让百万级IO均衡落盘且路径更短,将存储系统性能发挥到极致。

“为了确保全球最大规模的网络云正常上线运行,我们联合用户对存储集群展开了长达数月的魔鬼测试”,浪潮存储工程师表示。网络云的IO以虚拟机数据和上层应用数据为主,浪潮按照每个存储集群支持15000台虚机进行配置,分别对单卷随机读写、顺序写、混合读写以及全系统随机读写的IO、带宽、时延等指标进行了360无死角测试,达到了通信用户提出的单卷、系统性能不低于4万和12万IOPS、时延小于3ms的要求,产品成熟度得到了验证。

以通信行业为例,2020年全国移动互联网接入流量1656亿GB,相当于中国14亿人每人消耗118GB数据;其中春节期间,移动互联网更是创下7天消耗36亿GB数据流量的记录,还“捎带”打了548亿分钟电话、发送212亿条短信……海量实时数据洪流,在网络云资源池(NFV)支撑下收放自如,其中分布式存储平台发挥了作用。如此样板工程,其巨大示范及拉动作用不言而喻。

nosql数据库库和sql数据库的区别

一、概念

SQL (Structured Query Language) 数据库,指关系型数据库。主要代表:SQL Server,Oracle,MySQL(开源),PostgreSQL(开源)。

NoSQL(Not Only SQL)泛指非关系型数据库。主要代表:MongoDB,Redis,CouchDB。

二、区别

1、存储方式

SQL数据存在特定结构的表中;而NoSQL则更加灵活和可扩展,存储方式可以省是JSON文档、哈希表或者其他方式。SQL通常以数据库表形式存储数据。举个栗子,存个学生借书数据:

而NoSQL存储方式比较灵活,比如使用类JSON文件存储上表中熊大的借阅数据:

2、表/数据集合的数据的关系

在SQL中,必须定义好表和字段结构后才能添加数据,例如定义表的主键(primary key),索引(index),触发器(trigger),存储过程(stored procedure)等。表结构可以在被定义之后更新,但是如果有比较大的结构变更的话就会变得比较复杂。在NoSQL中,数据可以在任何时候任何地方添加,不需要先定义表。例如下面这段代码会自动创建一个新的"借阅表"数据集合:

NoSQL也可以在数据集中建立索引。以MongoDB为例,会自动在数据集合创建后创建唯一值_id字段,这样的话就可以在数据集创建后增加索引。

从这点来看,NoSQL可能更加适合初始化数据还不明确或者未定的项目中。

3、外部数据存储

SQL中如何需要增加外部关联数据的话,规范化做法是在原表中增加一个外键,关联外部数据表。例如需要在借阅表中增加审核人信息,先建立一个审核人表:

再在原来的借阅人表中增加审核人外键:

这样如果我们需要更新审核人个人信息的时候只需要更新审核人表而不需要对借阅人表做更新。而在NoSQL中除了这种规范化的外部数据表做法以外,我们还能用如下的非规范化方式把外部数据直接放到原数据集中,以提高查询效率。缺点也比较明显,更新审核人数据的时候将会比较麻烦。

4、SQL中的JOIN查询

SQL中可以使用JOIN表链接方式将多个关系数据表中的数据用一条简单的查询语句查询出来。NoSQL暂未提供类似JOIN的查询方式对多个数据集中的数据做查询。所以大部分NoSQL使用非规范化的数据存储方式存储数据。

5、数据耦合性

SQL中不允许删除已经被使用的外部数据,例如审核人表中的"熊三"已经被分配给了借阅人熊大,那么在审核人表中将不允许删除熊三这条数据,以保证数据完整性。而NoSQL中则没有这种强耦合的概念,可以随时删除任何数据。

6、事务

SQL中如果多张表数据需要同批次被更新,即如果其中一张表更新失败的话其他表也不能更新成功。这种场景可以通过事务来控制,可以在所有命令完成后再统一提交事务。而NoSQL中没有事务这个概念,每一个数据集的操作都是原子级的。

7、增删改查语法

8、查询性能

在相同水平的系统设计的前提下,因为NoSQL中省略了JOIN查询的消耗,故理论上性能上是优于SQL的。

什么是NoSQL数据库

什么是NoSQL数据库?从名称“非SQL”或“非关系型”衍生而来,这些数据库不使用类似SQL的查询语言,通常称为结构化存储。这些数据库自1960年就已经存在,但是直到现在一些大公司(例如Google和Facebook)开始使用它们时,这些数据库才流行起来。该数据库最明显的优势是摆脱了一组固定的列、连接和类似SQL的查询语言的限制。有时,NoSQL这个名称也可能表示“不仅仅SQL”,来确保它们可能支持SQL。 NoSQL数据库使用诸如键值、宽列、图形或文档之类的数据结构,并且可以如JSON之类的不同格式存储。

NoSQL-HDFS-基本概念

Hadoop

文件系统:文件系统是用来存储和管理文件,并且提供文件的查询、增加、删除等操作。

直观上的体验:在shell窗口输入 ls 命令,就可以看到当前目录下的文件夹、文件。

文件存储在哪里?硬盘

一台只有250G硬盘的电脑,如果需要存储500G的文件可以怎么办?先将电脑硬盘扩容至少250G,再将文件分割成多块,放到多块硬盘上储存。

通过 hdfs dfs -ls 命令可以查看分布式文件系统中的文件,就像本地的ls命令一样。

HDFS在客户端上提供了查询、新增和删除的指令,可以实现将分布在多台机器上的文件系统进行统一的管理。

在分布式文件系统中,一个大文件会被切分成块,分别存储到几台机器上。结合上文中提到的那个存储500G大文件的那个例子,这500G的文件会按照一定的大小被切分成若干块,然后分别存储在若干台机器上,然后提供统一的操作接口。

看到这里,不少人可能会觉得,分布式文件系统不过如此,很简单嘛。事实真的是这样的么?

潜在问题

假如我有一个1000台机器组成的分布式系统,一台机器每天出现故障的概率是0.1%,那么整个系统每天出现故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一个容错机制来保证发生差错时文件依然可以读出,这里暂时先不展开介绍。

如果要存储PB级或者EB级的数据,成千上万台机器组成的集群是很常见的,所以说分布式系统比单机系统要复杂得多呀。

这是一张HDFS的架构简图:

client通过nameNode了解数据在哪些DataNode上,从而发起查询。此外,不仅是查询文件,写入文件的时候也是先去请教NameNode,看看应该往哪个DateNode中去写。

为了某一份数据只写入到一个Datanode中,而这个Datanode因为某些原因出错无法读取的问题,需要通过冗余备份的方式来进行容错处理。因此,HDFS在写入一个数据块的时候,不会仅仅写入一个DataNode,而是会写入到多个DataNode中,这样,如果其中一个DataNode坏了,还可以从其余的DataNode中拿到数据,保证了数据不丢失。

实际上,每个数据块在HDFS上都会保存多份,保存在不同的DataNode上。这种是牺牲一定存储空间换取可靠性的做法。

接下来我们来看一下完整的文件写入的流程:

大文件要写入HDFS,client端根据配置将大文件分成固定大小的块,然后再上传到HDFS。

读取文件的流程:

1、client询问NameNode,我要读取某个路径下的文件,麻烦告诉我这个文件都在哪些DataNode上?

2、NameNode回复client,这个路径下的文件被切成了3块,分别在DataNode1、DataNode3和DataNode4上

3、client去找DataNode1、DataNode3和DataNode4,拿到3个文件块,通过stream读取并且整合起来

文件写入的流程:

1、client先将文件分块,然后询问NameNode,我要写入一个文件到某个路径下,文件有3块,应该怎么写?

2、NameNode回复client,可以分别写到DataNode1、DataNode2、DataNode3、DataNode4上,记住,每个块重复写3份,总共是9份

3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把数据写到他们上面

出于容错的考虑,每个数据块有3个备份,但是3个备份快都直接由client端直接写入势必会带来client端过重的写入压力,这个点是否有更好的解决方案呢?回忆一下mysql主备之间是通过binlog文件进行同步的,HDFS当然也可以借鉴这个思想,数据其实只需要写入到一个datanode上,然后由datanode之间相互进行备份同步,减少了client端的写入压力,那么至于是一个datanode写入成功即成功,还是需要所有的参与备份的datanode返回写入成功才算成功,是可靠性配置的策略,当然这个设置会影响到数据写入的吞吐率,我们可以看到可靠性和效率永远是“鱼和熊掌不可兼得”的。

潜在问题

NameNode确实会回放editlog,但是不是每次都从头回放,它会先加载一个fsimage,这个文件是之前某一个时刻整个NameNode的文件元数据的内存快照,然后再在这个基础上回放editlog,完成后,会清空editlog,再把当前文件元数据的内存状态写入fsimage,方便下一次加载。

这样,全量回放就变成了增量回放,但是如果NameNode长时间未重启过,editlog依然会比较大,恢复的时间依然比较长,这个问题怎么解呢?

SecondNameNode是一个NameNode内的定时任务线程,它会定期地将editlog写入fsimage,然后情况原来的editlog,从而保证editlog的文件大小维持在一定大小。

NameNode挂了, SecondNameNode并不能替代NameNode,所以如果集群中只有一个NameNode,它挂了,整个系统就挂了。hadoop2.x之前,整个集群只能有一个NameNode,是有可能发生单点故障的,所以hadoop1.x有本身的不稳定性。但是hadoop2.x之后,我们可以在集群中配置多个NameNode,就不会有这个问题了,但是配置多个NameNode,需要注意的地方就更多了,系统就更加复杂了。

俗话说“一山不容二虎”,两个NameNode只能有一个是活跃状态active,另一个是备份状态standby,我们看一下两个NameNode的架构图。

两个NameNode通过JournalNode实现同步editlog,保持状态一致可以相互替换。

因为active的NameNode挂了之后,standby的NameNode要马上接替它,所以它们的数据要时刻保持一致,在写入数据的时候,两个NameNode内存中都要记录数据的元信息,并保持一致。这个JournalNode就是用来在两个NameNode中同步数据的,并且standby NameNode实现了SecondNameNode的功能。

进行数据同步操作的过程如下:

active NameNode有操作之后,它的editlog会被记录到JournalNode中,standby NameNode会从JournalNode中读取到变化并进行同步,同时standby NameNode会监听记录的变化。这样做的话就是实时同步了,并且standby NameNode就实现了SecondNameNode的功能。

优点:

缺点:

什么是NoSQL数据库?

NoSQL,是not only sql,是非关系数据库,不同于oracle等关系数据库。hadoop,是分布式解决方案,即为Mapreduce(计算的)和HDFS(文件系统),使用Hadoop和NoSQL可以构造海量数据解决方案。


分享标题:nosql存文件,noSQL数据库
URL分享:http://6mz.cn/article/hcsedo.html

其他资讯