十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
10年积累的网站制作、做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有镇宁免费网站建设让你可以放心的选择与我们合作。
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
第一步,打开python语言命令窗口,声明一个函数print_color,调用range遍历,打印星号,如下图所示:
第二步,接着调用第一步中的函数,然后查看打印结果,可以发现生成一个三角形,如下图所示:
第三步,再次定义一个函数four_tu,利用循环生成星号,注意查看函数生成的图形。
第四步,调用上述步骤中定义的函数,然后查看打印图形组合的形状。
第五步,如果在定义的函数内,多次调用print()方法打印星号,会是什么样的结果呢。
第六步,在后续步骤中,调用函数打印结果,可以发现生成一个不规则的图形。
用python怎样画出如题所示的正余弦函数图像? 如此编写代码,使其中两个轴、图例、刻度,大小,LaTex公式等要素与原图一致,需要用到的代码如下,没有缩进:
#-*-codeing:utf-8;-*-
from matplotlib import pyplot as plt
import numpy as np
a=np.linspace(0,360,980)
b=np.sin(a/180*np.pi)
c=np.cos(a/180*np.pi)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim([0, 360])
ax.plot(a,b,label=r"$y=\sin(\theta)$")
ax.plot(a,c,label=r"$y=\cos(\theta)$")
ax.grid(True)
ax.set_ylabel(r"$y$")
ax.set_xlabel(r"$\theta$")
plt.xticks(np.arange(0,360+1,45))
plt.title("Sine Cosine Waves")
plt.legend()
plt.savefig("SinCosWaveDegFont.jpg")
plt.show()
代码运行show的窗口图
代码的截图
代码输出的文件的图
raw_input获取的输入是字符串,不能直接用np.array,需要用split进行切分,然后强制转化成数值类型,才能用plot函数
我把你的代码稍微修改了一下,可能不太漂亮,不过能运行了
x=[1,2,3]
a = raw_input('function')
a = a.split(' ')#依空格对字符串a进行切分,如果是用逗号分隔,则改成a.split(',')
b = []
for i in range(len(a)):#把切分好的字符强制转化成int类型,如果是小数,将int改为float
b.append(int(a[i]))
plt.plot(x, b, label='x', color="green", linewidth=1)
pre
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def func(x):
return -(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre