十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
python实现矩阵乘法的方法
在仙居等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站设计、做网站 网站设计制作专业公司,公司网站建设,企业网站建设,品牌网站制作,全网整合营销推广,外贸营销网站建设,仙居网站建设费用合理。
def matrixMul(A, B):
res = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
res[i][j] += A[i][k] * B[k][j]
return res
def matrixMul2(A, B):
return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]
a = [[1,2], [3,4], [5,6], [7,8]]
b = [[1,2,3,4], [5,6,7,8]]
print matrixMul(a,b)
print matrixMul(b,a)
乘积形式
除了上述的矩阵乘法以外,还有其他一些特殊的“乘积”形式被定义在矩阵上,值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
python实现矩阵乘法的方法
本文实例讲述了python实现矩阵乘法的方法。分享给大家供大家参考。
具体实现方法如下:
def matrixMul(A, B):
res = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
res[i][j] += A[i][k] * B[k][j]
return res
def matrixMul2(A, B):
return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]
a = [[1,2], [3,4], [5,6], [7,8]]
b = [[1,2,3,4], [5,6,7,8]]
print matrixMul(a,b)
print matrixMul(b,a)
print "-"*90
print matrixMul2(a,b)
print matrixMul2(b,a)
print "-"*90
from numpy import dot
print map(list,dot(a,b))
print map(list,dot(b,a))
#Out:
#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]
#[[50, 60], [114, 140]]
#------------------------------------------------------------------------
#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]
#[[50, 60], [114, 140]]
#------------------------------------------------------------------------
#[[11, 14, 17, 20], [23, 30, 37, 44], [35, 46, 57, 68], [47, 62, 77, 92]]
#[[50, 60], [114, 140]]
希望本文所述对大家的Python程序设计有所帮助。
def mmult(a,b):
zip_b = zip(*b)
return [[sum(ele_a*ele_b for ele_a, ele_b in zip(row_a, col_b))
for col_b in zip_b] for row_a in a]
x = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
y = [[1,2],[1,2],[3,4]]
print(mmult(x,y))
或者可以直接用numpy
import numpy as np # I want to check my solution with numpy
mx = np.matrix(x)
my = np.matrix(y)
print(mx * my)