快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

mysql怎么查询速度,如何优化mysql查询速度

怎么提升mysql查询速度

就是sql查询优化呗。

创新互联公司2013年开创至今,是专业互联网技术服务公司,拥有项目网站制作、成都网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元宜章做网站,已为上家服务,为宜章各地企业和个人服务,联系电话:18980820575

在不是服务器性能影响的时候,可以关注以下:

1、通过explain查看sql的执行计划,看是否用到了索引

2、是否sql写的不合理,需要改写sql等

3、还是sql没有问题,索引也合理,就是数据太大,字段太多引起查询慢,这个就可以考虑是不是改分表或者分开啥的。

优化这一块涉及到的比较多,可以多重网上,或者博客看看总结,对比你的情况去优化

如何解决mysql 查询和更新速度慢

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

如何提高mysql查询速度

在已有的 MySQL 服务器之上使用 Apache Spark (无需将数据导出到 Spark 或者 Hadoop 平台上),这样至少可以提升 10 倍的查询性能。使用多个 MySQL 服务器(复制或者 Percona XtraDB Cluster)可以让我们在某些查询上得到额外的性能提升。你也可以使用 Spark 的缓存功能来缓存整个 MySQL 查询结果表。

思路很简单:Spark 可以通过 JDBC 读取 MySQL 上的数据,也可以执行 SQL 查询,因此我们可以直接连接到 MySQL 并执行查询。那么为什么速度会快呢?对一些需要运行很长时间的查询(如报表或者BI),由于 Spark 是一个大规模并行系统,因此查询会非常的快。MySQL 只能为每一个查询分配一个 CPU 核来处理,而 Spark 可以使用所有集群节点的所有核。在下面的例子中,我们会在 Spark 中执行 MySQL 查询,这个查询速度比直接在 MySQL 上执行速度要快 5 到 10 倍。

另外,Spark 可以增加“集群”级别的并行机制,在使用 MySQL 复制或者 Percona XtraDB Cluster 的情况下,Spark 可以把查询变成一组更小的查询(有点像使用了分区表时可以在每个分区都执行一个查询),然后在多个 Percona XtraDB Cluster 节点的多个从服务器上并行的执行这些小查询。最后它会使用map/reduce 方式将每个节点返回的结果聚合在一起形成完整的结果。

mysql多表联合查询速度的问题

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。

如何优化Mysql执行查询数据的速度

1.首先我的表默认是:innoDB,这种表的类型不支持全文检索,所以要先改变其类型为MyISAM。

alter news_info title engine=MyISAM;

2.然后要在对应的要进行查找的字段上面建立全文检索的索引:

alter news_info add fulltext index(title);

如果要同时对多个字段进行检索可以这样:

Mysql 查询速度慢怎么办

问题

我们有一个 SQL,用于找到没有主键 / 唯一键的表,但是在 MySQL 5.7 上运行特别慢,怎么办?

实验

我们搭建一个 MySQL 5.7 的环境,此处省略搭建步骤。

写个简单的脚本,制造一批带主键和不带主键的表:

执行一下脚本:

现在执行以下 SQL 看看效果:

...

执行了 16.80s,感觉是非常慢了。

现在用一下 DBA 三板斧,看看执行计划:

感觉有点惨,由于 information_schema.columns 是元数据表,没有必要的统计信息。

那我们来 show warnings 看看 MySQL 改写后的 SQL:

我们格式化一下 SQL:

可以看到 MySQL 将

select from A where A.x not in (select x from B) //非关联子查询

转换成了

select from A where not exists (select 1 from B where B.x = a.x) //关联子查询

如果我们自己是 MySQL,在执行非关联子查询时,可以使用很简单的策略:

select from A where A.x not in (select x from B where ...) //非关联子查询:1. 扫描 B 表中的所有记录,找到满足条件的记录,存放在临时表 C 中,建好索引2. 扫描 A 表中的记录,与临时表 C 中的记录进行比对,直接在索引里比对,

而关联子查询就需要循环迭代:

select from A where not exists (select 1 from B where B.x = a.x and ...) //关联子查询扫描 A 表的每一条记录 rA:     扫描 B 表,找到其中的第一条满足 rA 条件的记录。

显然,关联子查询的扫描成本会高于非关联子查询。

我们希望 MySQL 能先"缓存"子查询的结果(缓存这一步叫物化,MATERIALIZATION),但MySQL 认为不缓存更快,我们就需要给予 MySQL 一定指导。

...

可以看到执行时间变成了 0.67s。

整理

我们诊断的关键点如下:

\1. 对于 information_schema 中的元数据表,执行计划不能提供有效信息。

\2. 通过查看 MySQL 改写后的 SQL,我们猜测了优化器发生了误判。

\3. 我们增加了 hint,指导 MySQL 正确进行优化判断。

但目前我们的实验仅限于猜测,猜中了万事大吉,猜不中就无法做出好的诊断。


当前名称:mysql怎么查询速度,如何优化mysql查询速度
地址分享:http://6mz.cn/article/hchjee.html

其他资讯