十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
R Graph Cookbook 代码怎么写,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
我们提供的服务有:做网站、成都网站制作、微信公众号开发、网站优化、网站认证、常山ssl等。为上1000+企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的常山网站制作公司
#CHAPTER 5 #Recipe 1. 多个因素变量条形图Creating Bar charts with more than one factor variable install.packages("RColorBrewer") #if not already installed library(RColorBrewer) citysales<-read.csv("citysales.csv") barplot(as.matrix(citysales[,2:4]), beside=TRUE, legend.text=citysales$City, args.legend=list(bty="n",horiz=TRUE), col=brewer.pal(5,"Set1"), border="white", ylim=c(0,100), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures") box(bty="l") #Recipe 2.创建堆叠条形图 Creating stacked bar charts install.packages("RColorBrewer") library(RColorBrewer) citysales<-read.csv("citysales.csv") barplot(as.matrix(citysales[,2:4]), legend.text=citysales$City, args.legend=list(bty="n",horiz=TRUE), col=brewer.pal(5,"Set1"), border="white", ylim=c(0,200), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures") citysalesperc<-read.csv("citysalesperc.csv") par(mar=c(5,4,4,8),xpd=T) barplot(as.matrix(citysalesperc[,2:4]), col=brewer.pal(5,"Set1"), border="white", ylab="Sales Revenue (1,000's of USD)", main="Percentage Sales Figures") legend("right",legend=citysalesperc$City,bty="n",inset=c(-0.3,0),fill=brewer.pal(5,"Set1")) #Recipe 3. 调整条形图方向(水平和垂直)Adjusting the orientation of bars ?horizontal and vertical barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE, legend.text=citysales$City, args.legend=list(bty="n"), col=brewer.pal(5,"Set1"), border="white", xlim=c(0,100), xlab="Sales Revenue (1,000's of USD)", main="Sales Figures") par(mar=c(5,4,4,8),xpd=T) barplot(as.matrix(citysalesperc[,2:4]), horiz=TRUE, col=brewer.pal(5,"Set1"), border="white", xlab="Percentage of Sales", main="Perecentage Sales Figures") legend("right",legend=citysalesperc$City,bty="n", inset=c(-0.3,0),fill=brewer.pal(5,"Set1")) #Recipe 4.调整杆宽度、间距、颜色和边界 Adjusting bar widths, spacing, colours and borders barplot(as.matrix(citysales[,2:4]), beside=TRUE, legend.text=citysales$City, args.legend=list(bty="n",horiz=T), col=c("#E5562A","#491A5B","#8C6CA8","#BD1B8A","#7CB6E4"), border=FALSE, space=c(0,5), ylim=c(0,100), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures") barplot(as.matrix(citysales[,2:4]), beside=T, legend.text=citysales$City, args.legend=list(bty="n",horiz=T), ylim=c(0,100), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures") #Recipe 5.条线上方或旁边显示值 Displaying values on top of or next to the bars x<-barplot(as.matrix(citysales[,2:4]), beside=TRUE, legend.text=citysales$City, args.legend=list(bty="n",horiz=TRUE), col=brewer.pal(5,"Set1"), border="white", ylim=c(0,100), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures") y<-as.matrix(citysales[,2:4]) text(x,y+2,labels=as.character(y)) #Horizontal bars y<-barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE, legend.text=citysales$City, args.legend=list(bty="n"), col=brewer.pal(5,"Set1"), border="white", xlim=c(0,100), xlab="Sales Revenue (1,000's of USD)", main="Sales Figures") x<-as.matrix(citysales[,2:4]) text(x+2,y,labels=as.character(x)) #Recipe 6. Placing labels inside bars rain<-read.csv("cityrain.csv") y<-barplot(as.matrix(rain[1,-1]),horiz=T,col="white",yaxt="n", main="Monthly Rainfall in Major CitiesJanuary", xlab="Rainfall (mm)") x<-0.5*rain[1,-1] text(x,y,colnames(rain[-1])) #Recipe 7.创建带垂直误差线的条形图Creating Bar charts with vertical error bars sales<-t(as.matrix(citysales[,-1])) colnames(sales)<-citysales[,1] x<-barplot(sales,beside=T,legend.text=rownames(sales), args.legend=list(bty="n",horiz=T), col=brewer.pal(3,"Set2"),border="white",ylim=c(0,100), ylab="Sales Revenue (1,000's of USD)", main="Sales Figures") arrows(x0=x, y0=sales*0.95, x1=x, y1=sales*1.05, angle=90, code=3, length=0.04, lwd=0.4) #Creating a function errorbars<-function(x,y,upper,lower=upper,length=0.04,lwd=0.4,...) { arrows(x0=x, y0=y+upper, x1=x, y1=y-lower, angle=90, code=3, length=length, lwd=lwd) } errorbars(x,sales,0.05*sales) #Recipe 8. 带条件变量的点阵图Modifying dotplots by grouping variables install.packages("reshape") library(reshape) sales<-melt(citysales) sales$color[sales[,2]=="ProductA"] <- "red" sales$color[sales[,2]=="ProductB"] <- "blue" sales$color[sales[,2]=="ProductC"] <- "violet" dotchart(sales[,3],labels=sales$City,groups=sales[,2], col=sales$color,pch=19, main="Sales Figures", xlab="Sales Revenue (1,000's of USD)") #Recipe 9. 可读性更好的饼图Making better readable pie charts with clockwise-ordered slices browsers<-read.table("browsers.txt",header=TRUE) browsers<-browsers[order(browsers[,2]),] pie(browsers[,2], labels=browsers[,1], clockwise=TRUE, radius=1, col=brewer.pal(7,"Set1"), border="white", main="Percentage Share of Internet Browser usage") #Recipe 10. 对饼图增加标签Labelling a pie chart with percentage values for each slice browsers<-read.table("browsers.txt",header=TRUE) browsers<-browsers[order(browsers[,2]),] pielabels <- sprintf("%s = %3.1f%s", browsers[,1], 100*browsers[,2]/sum(browsers[,2]), "%") pie(browsers[,2], labels=pielabels, clockwise=TRUE, radius=1, col=brewer.pal(7,"Set1"), border="white", cex=0.8, main="Percentage Share of Internet Browser usage") #Recipe 11.饼图增添图例 Adding a legend to a pie chart browsers<-read.table("browsers.txt",header=TRUE) browsers<-browsers[order(browsers[,2]),] pielabels <- sprintf("%s = %3.1f%s", browsers[,1], 100*browsers[,2]/sum(browsers[,2]), "%") pie(browsers[,2], labels=NA, clockwise=TRUE, col=brewer.pal(7,"Set1"), border="white", radius=0.7, cex=0.8, main="Percentage Share of Internet Browser usage") legend("bottomright",legend=pielabels,bty="n", fill=brewer.pal(7,"Set1"))
#Recipe 1.频率或概率的图示 Visualising distributions as frequency or probability air<-read.csv("airpollution.csv") hist(air$Nitrogen.Oxides, xlab="Nitrogen Oxide Concentrations", main="Distribution of Nitrogen Oxide Concentrations") hist(air$Nitrogen.Oxides, freq=FALSE, xlab="Nitrogen Oxide Concentrations", main="Distribution of Nitrogen Oxide Concentrations") #Recipe 2.设置直方图箱宽度和截断数 Setting bin size and number of breaks air<-read.csv("airpollution.csv") hist(air$Nitrogen.Oxides, breaks=20, xlab="Nitrogen Oxide Concentrations", main="Distribution of Nitrogen Oxide Concentrations") hist(air$Nitrogen.Oxides, breaks=c(0,100,200,300,400,500,600), xlab="Nitrogen Oxide Concentrations", main="Distribution of Nitrogen Oxide Concentrations") #Recipe 3.调整直方图风格:颜色、边界、坐标 Adjusting histogram styles: bar colours, borders and axes air<-read.csv("airpollution.csv") hist(air$Respirable.Particles, prob=TRUE, col="black", border="white", xlab="Respirable Particle Concentrations", main="Distribution of Respirable Particle Concentrations") par(yaxs="i",las=1) hist(air$Respirable.Particles, prob=TRUE, col="black", border="white", xlab="Respirable Particle Concentrations", main="Distribution of Respirable Particle Concentrations") box(bty="l") grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray") #Recipe 4.直方图上增加密度拟合线 Overlaying density line over a histogram par(yaxs="i",las=1) hist(air$Respirable.Particles, prob=TRUE, col="black", border="white", xlab="Respirable Particle Concentrations", main="Distribution of Respirable Particle Concentrations") box(bty="l") lines(density(air$Respirable.Particles,na.rm=T),col="red",lwd=4) grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray") #Recipe 5.带直方图的矩阵图 Multiple histograms along the diagonal of a pairs plot panel.hist <- function(x, ...) { par(usr = c(par("usr")[1:2], 0, 1.5) ) hist(x, prob=TRUE,add=TRUE,col="black",border="white") } plot(iris[,1:4], main="Relationships between characteristics of iris flowers", pch=19, col="blue", cex=0.9, diag.panel=panel.hist) #Recipe 6. Histograms in the margins of line and scatterplots air<-read.csv("airpollution.csv") #Set up the layout first layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), widths=c(3,1), heights=c(1,3), TRUE) #Make Scatterplot par(mar=c(5.1,4.1,0.1,0)) plot(air$Respirable.Particles~air$Nitrogen.Oxides, pch=19,col="black", xlim=c(0,600),ylim=c(0,80), xlab="Nitrogen Oxides Concentrations", ylab="Respirable Particle Concentrations") #Plot histogram of X variable in the top row par(mar=c(0,4.1,3,0)) hist(air$Nitrogen.Oxides, breaks=seq(0,600,100), ann=FALSE,axes=FALSE, col="black",border="white") #Plot histogram of Y variable to the right of the scatterplot yhist <- hist(air$Respirable.Particles, breaks=seq(0,80,10), plot=FALSE) par(mar=c(5.1,0,0.1,1)) barplot(yhist$density, horiz=TRUE, space=0,axes=FALSE, col="black",border="white")
#CHATER 7 #Recipe 1. Creating box plots with narrow boxes for small number of variables air<-read.csv("airpollution.csv") boxplot(air,las=1) boxplot(air,boxwex=0.2,las=1) par(las=1) boxplot(air,width=c(1,2)) #Recipe 2. Grouping over a variable metals<-read.csv("metals.csv") boxplot(Cu~Source,data=metals, main="Summary of Copper (Cu) concentrations by Site") boxplot(Cu~Source*Expt,data=metals, main="Summary of Copper (Cu) concentrations by Site") #Recipe 3. Varying box widths by number of observations metals<-read.csv("metals.csv") boxplot(Cu ~ Source, data = metals, varwidth=TRUE, main="Summary of Copper concentrations by Site") #Recipe 4. Creating box plots with notches metals<-read.csv("metals.csv") boxplot(Cu ~ Source, data = metals, varwidth=TRUE, notch=TRUE, main="Summary of Copper concentrations by Site") #Recipe 5. Including or excluding outliers metals<-read.csv("metals.csv") boxplot(metals[,-1], outline=FALSE, main="Summary of metal concentrations by Site \n (without outliers)") #Recipe 6. Creating horizontal box plots metals<-read.csv("metals.csv") boxplot(metals[,-1], horizontal=TRUE, las=1, main="Summary of metal concentrations by Site") #Recipe 7. Changing box styling metals<-read.csv("metals.csv") boxplot(metals[,-1], border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of metal concentrations by Site") grid(nx=NA,ny=NULL,col="gray",lty="dashed") #Recipe 8. Adjusting the extent of plot whiskers outside the box metals<-read.csv("metals.csv") boxplot(metals[,-1], range=1, border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of metal concentrations by Site \n (range=1) ") boxplot(metals[,-1], range=0, border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of metal concentrations by Site \n (range=0)") #Recipe 9. Showing number of observations metals<-read.csv("metals.csv") b<-boxplot(metals[,-1], xaxt="n", border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of metal concentrations by Site") axis(side=1,at=1:length(b$names),labels=paste(b$names,"\n(n=",b$n,")",sep=""),mgp=c(3,2,0)) install.packages("gplots") library(gplots) boxplot.n(metals[,-1], border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of metal concentrations by Site") #Recipe 10. Splitting a variable at arbitrary values into subsets metals<-read.csv("metals.csv") cuts<-c(0,40,80) Y<-split(x=metals$Cu, f=findInterval(metals$Cu, cuts)) boxplot(Y, xaxt="n", border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of Copper concentrations", xlab="Concentration ranges", las=1) axis(1,at=1:length(clabels), labels=c("Below 0","0 to 40","40 to 80","Above 80"), lwd=0,lwd.ticks=1,col="gray") boxplot.cuts<-function(y,cuts) { Y<-split(metals$Cu, f=findInterval(y, cuts)) b<-boxplot(Y, xaxt="n", border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of Copper concentrations", xlab="Concentration ranges", las=1) clabels<-paste("Below",cuts[1]) for(k in 1:(length(cuts)-1)) { clabels<-c(clabels, paste(as.character(cuts[k]), "to",as.character(cuts[k+1]))) } clabels<-c(clabels, paste("Above",as.character(cuts[length(cuts)]))) axis(1,at=1:length(clabels), labels=clabels,lwd=0,lwd.ticks=1,col="gray") } boxplot.cuts(metals$Cu,c(0,30,60)) boxplot(Cu~Source,data=metals,subset=Cu>40) #An alternative definition of boxplot.cuts() boxplot.cuts<-function(y,cuts) { f=cut(y, c(min(y[!is.na(y)]),cuts,max(y[!is.na(y)])), ordered_results=TRUE); Y<-split(y, f=f) b<-boxplot(Y, xaxt="n", border = "white", col = "black", boxwex = 0.3, medlwd=1, whiskcol="black", staplecol="black", outcol="red",cex=0.3,outpch=19, main="Summary of Copper concentrations", xlab="Concentration ranges", las=1) clabels = as.character(levels(f)) axis(1,at=1:length(clabels), labels=clabels,lwd=0,lwd.ticks=1,col="gray") } boxplot.cuts(metals$Cu,c(0,40,80))
#CHAPTER 8 #Recipe 1. Creating heat maps of single Z variable with scale sales<-read.csv("sales.csv") install.packages("RColorBrewer") library(RColorBrewer) rownames(sales)<-sales[,1] sales<-sales[,-1] data_matrix<-data.matrix(sales) pal=brewer.pal(7,"YlOrRd") breaks<-seq(3000,12000,1500) #Create layout with 1 row and 2 columns (for the heatmap and scale); the heatmap column is 8 times as wide as the scale column layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(8,1), heights=c(1,1)) #Set margins for the heatmap par(mar = c(5,10,4,2),oma=c (0.2,0.2,0.2,0.2),mex=0.5) image(x=1:nrow(data_matrix),y=1:ncol (data_matrix), z=data_matrix, axes=FALSE, xlab="Month", ylab="", col=pal[1:(length(breaks)-1)], breaks=breaks, main="Sales Heat Map") axis(1,at=1:nrow (data_matrix),labels=rownames (data_matrix), col="white",las=1) axis(2,at=1:ncol (data_matrix),labels=colnames (data_matrix), col="white",las=1) abline(h=c(1:ncol(data_matrix))+0.5, v=c(1:nrow(data_matrix))+0.5, col="white",lwd=2,xpd=FALSE) breaks2<-breaks[-length(breaks)] # Color Scale par(mar = c(5,1,4,7)) # If you get a figure margins error while running the above code, enlarge the plot device or adjust the margins so that the graph and scale fit within the device. image(x=1, y=0:length(breaks2),z=t (matrix(breaks2))*1.001, col=pal[1:length(breaks)-1], axes=FALSE, breaks=breaks, xlab="", ylab="", xaxt="n") axis(4,at=0:(length(breaks2)-1), labels=breaks2, col="white", las=1) abline(h=c(1:length (breaks2)),col="white",lwd=2,xpd=F) #Recipe 2. Creating correlation heat maps genes<-read.csv("genes.csv") rownames(genes)<-genes[,1] data_matrix<-data.matrix(genes[,-1]) pal=heat.colors(5) breaks<-seq(0,1,0.2) layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(8,1), heights=c(1,1)) par(mar = c(3,7,12,2),oma=c (0.2,0.2,0.2,0.2),mex=0.5) image(x=1:nrow(data_matrix),y=1:ncol (data_matrix), z=data_matrix, xlab="", ylab="", breaks=breaks, col=pal, axes=FALSE) text(x=1:nrow(data_matrix)+0.75, y=par ("usr")[4] + 1.25, srt = 45, adj = 1, labels = rownames(data_matrix), xpd = TRUE) axis(2,at=1:ncol (data_matrix),labels=colnames (data_matrix),col="white",las=1) abline(h=c(1:ncol(data_matrix))+0.5,v=c (1:nrow(data_matrix)) +0.5,col="white",lwd=2,xpd=F) title("Correlation between genes",line=8,adj=0) breaks2<-breaks[-length(breaks)] # Color Scale par(mar = c(25,1,25,7)) image(x=1, y=0:length(breaks2),z=t (matrix(breaks2))*1.001 ,col=pal[1:length(breaks)-1] ,axes=FALSE ,breaks=breaks ,xlab="",ylab="" ,xaxt="n") axis(4,at=0:(length (breaks2)),labels=breaks,col="white",las= 1) abline(h=c(1:length (breaks2)),col="white",lwd=2,xpd=FALSE) #Recipe 3. Summarising multivariate data in a single heat map nba <- read.csv("nba.csv") library(RColorBrewer) rownames(nba)<-nba[,1] data_matrix<-t(scale(data.matrix(nba[,- 1]))) pal=brewer.pal(6,"Blues") statnames<-c("Games Played", "Minutes Played", "Total Points", "Field Goals Made", "Field Goals Attempted", "Field Goal Percentage", "Free Throws Made", "Free Throws Attempted", "Free Throw Percentage", "Three Pointers Made", "Three Pointers Attempted", "Three Point Percentage", "Offensive Rebounds", "Defensive Rebounds", "Total Rebounds", "Assists", "Steals", "Blocks", "Turnovers", "Fouls") par(mar = c(3,14,19,2),oma=c (0.2,0.2,0.2,0.2),mex=0.5) #Heat map image(x=1:nrow(data_matrix),y=1:ncol (data_matrix), z=data_matrix, xlab="", ylab="", col=pal, axes=FALSE) #X axis labels text(1:nrow(data_matrix), par("usr")[4] + 1, srt = 45, adj = 0, labels = statnames, xpd = TRUE, cex=0.85) #Y axis labels axis(side=2,at=1:ncol(data_matrix), labels=colnames(data_matrix), col="white",las=1, cex.axis=0.85) #White separating lines abline(h=c(1:ncol(data_matrix))+0.5, v=c(1:nrow(data_matrix))+0.5, col="white",lwd=1,xpd=F) #Graph Title text(par("usr")[1]+5, par("usr")[4] + 12, "NBA per game performance of top 50corers", xpd=TRUE,font=2,cex=1.5) nba <- nba[order(nba$PTS),] #Recipe 4. Creating contour plots contour(x=10*1:nrow(volcano), y=10*1:ncol(volcano), z=volcano, xlab="Metres West",ylab="Metres North", main="Topography of Maunga Whau Volcano") par(las=1) plot(0,0,xlim=c(0,10*nrow (volcano)),ylim=c(0,10*ncol (volcano)),type="n",xlab="Metres West",ylab="Metres North",main="Topography of Maunga Whau Volcano") u<-par("usr") rect(u[1],u[3],u[2],u [4],col="lightgreen") contour(x=10*1:nrow(volcano),y=10*1:ncol (volcano), volcano,col="red",add=TRUE) #Recipe 5. Creating filled contour plots filled.contour(x = 10*1:nrow(volcano), y = 10*1:ncol(volcano), z = volcano, color.palette = terrain.colors, plot.title = title(main = "The Topography of Maunga Whau", xlab = "Meters North", ylab = "Meters West"), plot.axes = {axis(1, seq (100, 800, by = 100)) axis(2, seq(100, 600, by = 100))}, key.title = title (main="Height\n(meters)"), key.axes = axis(4, seq (90, 190, by = 10))) #Increased detail and smoothness filled.contour(x = 10*1:nrow(volcano), y = 10*1:ncol(volcano), z = volcano, color.palette = terrain.colors, plot.title = title(main = "The Topography of Maunga Whau", xlab = "Meters North", ylab = "Meters West"), nlevels=100, plot.axes = {axis(1, seq (100, 800, by = 100)) axis(2, seq (100, 600, by = 100))}, key.title = title (main="Height\n(meters)"), key.axes = axis(4, seq (90, 190, by = 10))) #Recipe 6. Creating 3-dimensional surface plots install.packages("rgl") library(rgl) z <- 2 * volcano x <- 10 * (1:nrow(z)) y <- 10 * (1:ncol(z)) zlim <- range(z) zlen <- zlim[2] - zlim[1] + 1 colorlut <- terrain.colors(zlen) col <- colorlut[ z-zlim[1]+1 ] rgl.open() rgl.surface(x, y, z, color=col, back="lines") #Recipe 7. Visualizing time Series as calendar heat maps source("calendarHeat.R") stock.data <- read.csv("google.csv") install.packages("chron") library("chron") calendarHeat(dates=stock.data$Date, values=stock.data$Adj.Close, varname="Google Adjusted Close") #Using the openair package install.packages("openair") library(openair) calendarPlot(mydata) mydata$sales<-rnorm(length (mydata$nox),mean=1000,sd=1500) calendarPlot (mydata,pollutant="sales",main="Daily Sales in 2003")
#CHAPTER 9 #Recipe 1. Plotting global data by countries on a world map install.packages("maps") library(maps) install.packages("WDI") library(WDI) install.packages("RColorBrewer") library(RColorBrewer) colors = brewer.pal(7,"PuRd") wgdp<-WDIsearch("gdp") w<-WDI(country="all", indicator=wgdp[4,1], start=2005, end=2005) w[63,1] <- "USA" x<-map(plot=FALSE) x$measure<-array(NA,dim=length(x$names)) for(i in 1:length(w$country)) { for(j in 1:length(x$names)) { if(grepl(w$country[i],x$names[j],ignore.case=T)) x$measure[j]<-w[i,3] } } sd = data.frame(col=colours,values=seq(min(x$measure[!is.na(x$measure)]), max(x$measure[!is.na(x$measure)])*1.0001,length.out=7)) #intervals color scheme sc<-array("#FFFFFF",dim=length(x$names)) for (i in 1:length(x$measure)) if(!is.na(x$measure[i])) sc[i]=as.character(sd$col[findInterval(x$measure[i],sd$values)]) breaks<-sd$values layout(matrix(data=c(2,1), nrow=1, ncol=2), widths=c(8,1), heights=c(8,1)) # Color Scale first par(mar = c(20,1,20,7),oma=c(0.2,0.2,0.2,0.2),mex=0.5) image(x=1, y=0:length(breaks),z=t(matrix(breaks))*1.001 ,col=colours[1:length(breaks)-1] ,axes=FALSE ,breaks=breaks ,xlab="",ylab="" ,xaxt="n") axis(4,at=0:(length(breaks)-1),labels=round(breaks),col="white",las=1) abline(h=c(1:length(breaks)),col="white",lwd=2,xpd=F) #Map z<-map(col=sc,fill=TRUE,lty="blank") map(add=TRUE,col="gray",fill=FALSE) title("CO2 emissions (kg per 2000 US$ of GDP)") #Recipe 2. Creating graphs with regional maps library(maps) library(RColorBrewer) x<-map("state",plot=FALSE) for(i in 1:length(rownames(USArrests))) { for(j in 1:length(x$names)) { if(grepl(rownames(USArrests)[i],x$names[j],ignore.case=T)) x$measure[j]<-as.double(USArrests$Murder[i]) } } colours <- brewer.pal(7,"Reds") sd <- data.frame(col=colours, values=seq(min(x$measure[!is.na(x$measure)]), max(x$measure[!is.na(x$measure)])*1.0001, length.out=7)) breaks<-sd$values matchcol<-function(y) { as.character(sd$col[findInterval(y,sd$values)]) } layout(matrix(data=c(2,1), nrow=1, ncol=2), widths=c(8,1),heights=c(8,1)) # Color Scale first par(mar = c(20,1,20,7),oma=c(0.2,0.2,0.2,0.2),mex=0.5) image(x=1, y=0:length(breaks),z=t(matrix(breaks))*1.001 ,col=colours[1:length(breaks)-1] ,axes=FALSE ,breaks=breaks ,xlab="", ylab="", xaxt="n") axis(4,at=0:(length(breaks)-1),labels=round(breaks),col="white",las=1) abline(h=c(1:length(breaks)),col="white",lwd=2,xpd=F) #Map map("state", boundary = FALSE, col=matchcol(x$measure), fill=TRUE,lty="blank") map("state", col="white",add = TRUE) title("Murder Rates by US State in 1973 \n (arrests per 100,000 residents)", line=2) map("county", "new york") map("state", region = c("california", "oregon", "nevada")) map('italy', fill = TRUE, col = brewer.pal(7,"Set1")) install.packages("sp") library(sp) load(url("http://gadm.org/data/rda/FRA_adm1.RData")) gadm$rainfall<-rnorm(length(gadm$NAME_1),mean=50,sd=15) spplot(gadm,"rainfall", col.regions = rev(terrain.colors(gadm$rainfall)), main="Rainfall (simulated) in French administrative regions") #Recipe 3. Plotting data on Google maps install.packages("rgdal") library(rgdal) install.packages("RgoogleMaps") library(RgoogleMaps) air<-read.csv("londonair.csv") london<-GetMap(center=c(51.51,-0.116), zoom =10, destfile = "London.png", maptype = "mobile") PlotOnStaticMap(london,lat = air$lat, lon = air$lon, cex=2,pch=19,col=as.character(air$color)) london<-GetMap(center=c(51.51,-0.116),zoom =10, destfile = "London_satellite.png", maptype = "satellite") PlotOnStaticMap(london,lat = air$lat, lon = air$lon, cex=2,pch=19,col=as.character(air$color)) GetMap(center=c(40.714728,-73.99867), zoom =14, destfile = "Manhattan.png", maptype = "hybrid"); #Using OpenStreetMap GetMap.OSM(lonR= c(-74.67102, -74.63943), latR = c(40.33804,40.3556), scale = 7500, destfile = "PrincetonOSM.png") #Recipe 4. Creating and reading KML data install.packages("rgdal") library(rgdal) cities <- readOGR(system.file("vectors", package = "rgdal")[1], "cities") writeOGR(cities, "cities.kml", "cities", driver="KML") df <- readOGR("cities.kml", "cities") #Recipe 5. Working with ESRI shapefiles install.packages("maptools") library(maptools) sfdata <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")[1], proj4string=CRS("+proj=longlat")) plot(sfdata, col="orange", border="white", axes=TRUE) #Output as shapefile writeSpatialShape(sfdata,"xxpoly") install.packages("shapefiles") library(shapefiles) sf<-system.file("shapes/sids.shp", package="maptools")[1] sf<-substr(sf,1,nchar(sf)-4) sfdata <- read.shapefile(sf) write.shapefile(sfdata, "newsf")
#CHAPTER 10 #Recipe 1. Exporting graphs in high resolution image formats: PNG, JPEG, BMP, TIFF png("cars.png",res=200,height=600,width=600) plot(cars$dist~cars$speed, main="Relationship between car distance and speed", xlab="Speed (miles per hour)", ylab="Distance travelled (miles)", xlim=c(0,30), ylim=c(0,140), xaxs="i", yaxs="i", col="red", pch=19) dev.off() png("cars.png",res=200,height=600,width=600) par(mar=c(4,4,3,1),omi=c(0.1,0.1,0.1,0.1),mgp=c(3,0.5,0), las=1,mex=0.5, cex.main=0.6,cex.lab=0.5,cex.axis=0.5) plot(cars$dist~cars$speed, main="Relationship between car distance and speed", xlab="Speed (miles per hour)", ylab="Distance travelled (miles)", xlim=c(0,30), ylim=c(0,140), xaxs="i", yaxs="i", col="red", pch=19, cex=0.5) dev.off() #Recipe 2. Exporting graphs in vector formats: SVG, PDF, PS pdf("cars.pdf") plot(cars$dist~cars$speed, main="Relationship between car distance and speed", xlab="Speed (miles per hour)", ylab="Distance travelled (miles)", xlim=c(0,30), ylim=c(0,140), xaxs="i", yaxs="i", col="red", pch=19, cex=0.5) dev.off() svg("3067_10_03.svg") #plot command here dev.off() postscript("3067_10_03.ps") #plot command here dev.off() #Exporting to SVG for Windows users install.packages("Cairo") library(Cairo) CairoSVG("3067_10_03.svg") #plot command here dev.off() pdf("multiple.pdf") for(i in 1:3) plot(cars,pch=19,col=i) dev.off() pdf("multiple.pdf",colormodel=攃myk? for(i in 1:3) plot(cars,pch=19,col=i) dev.off() #Recipe 3. Adding Mathematical and scientific notations (typesetting) plot(air,las=1, main=expression(paste("Relationship between ",PM[10]," and ",NO[X])), xlab=expression(paste(NO[X]," concentrations (",mu*g^-3,")")), ylab=expression(paste(PM[10]," concentrations (",mu*g^-3,")"))) demo(plotmath) #Recipe 4. Adding text descriptions to graphs par(mar=c(12,4,3,2)) plot(rnorm(1000),main="Random Normal Distribution") desc<-expression(paste("The normal distribution has density ", f(x) == frac(1,sqrt(2*pi)*sigma)~ plain(e)^frac(-(x-mu)^2,2*sigma^2))) mtext(desc,side=1,line=4,padj=1,adj=0) mtext(expression(paste("where ", mu, " is the mean of the distribution and ",sigma," the standard deviation.")),side=1,line=7,padj=1,adj=0) dailysales<-read.csv("dailysales.csv") par(mar=c(5,5,12,2)) plot(units~as.Date(date,"%d/%m/%y"),data=dailysales,type="l",las=1,ylab="Units Sold",xlab="Date") desc<-"The graph below shows sales data for Product A in the month of January 2010. There were a lot of ups and downs in the number of units sold. The average number of units sold was around 5000. The highest sales were recorded on the 27th January, nearly 7000 units sold." mtext(paste(strwrap(desc,width=80),collapse="\n"),side=3,line=3,padj=0,adj=0) title("Daily Sales Trends",line=10,adj=0,font=2) #Recipe 5. Using Graph Templates themeplot<-function(x,theme,...) { i<-which(themes$theme==theme) par(bg=as.character(themes[i,]$bg_color),las=1) plot(x,type="n",...) u<-par("usr") plotcol=as.character(themes[i,]$plot_color) rect(u[1],u[3],u[2],u[4],col=plotcol,border=plotcol) points(x,col=as.character(themes[i,]$symbol_color),...) box() } themeplot(rnorm(1000),theme="white",pch=21,main="White") themeplot(rnorm(1000),theme="lightgray",pch=21,main="Light Gray") themeplot(rnorm(1000),theme="dark",pch=21,main="Dark") themeplot(rnorm(1000),theme="pink",pch=21,main="Pink") #Recipe 6. Choosing font families and styles under Windows, OS X and Linux par(mar=c(1,1,5,1)) plot(1:200,type="n",main="Fonts under Windows",axes=FALSE,xlab="",ylab="") text(0,180,"Arial \n(family=\"sans\", font=1)", family="sans",font=1,adj=0) text(0,140,"Arial Bold \n(family=\"sans\", font=2)", family="sans",font=2,adj=0) text(0,100,"Arial Italic \n(family=\"sans\", font=3)", family="sans",font=3,adj=0) text(0,60,"Arial Bold Italic \n(family=\"sans\", font=4)", family="sans",font=4,adj=0) text(70,180,"Times \n(family=\"serif\", font=1)", family="serif",font=1,adj=0) text(70,140,"Times Bold \n(family=\"serif\", font=2)", family="serif",font=2,adj=0) text(70,100,"Times Italic \n(family=\"serif\", font=3)", family="serif",font=3,adj=0) text(70,60,"Times Bold Italic \n(family=\"serif\", font=4)", family="serif",font=4,adj=0) text(130,180,"Courier New\n(family=\"mono\", font=1)", family="mono",font=1,adj=0) text(130,140,"Courier New Bold \n(family=\"mono\", font=2)", family="mono",font=2,adj=0) text(130,100,"Courier New Italic \n(family=\"mono\", font=3)", family="mono",font=3,adj=0) text(130,60,"Courier New Bold Italic \n(family=\"mono\", font=4)", family="mono",font=4,adj=0) windowsFonts(GE = windowsFont("Georgia")) text(150,80,"Georgia",family="GE") #Recipe 7. Choosing fonts for PostScripts and PDFs pdf("fonts.pdf",family="AvantGarde") plot(rnorm(100),main="Random Normal Distribution") dev.off() postscript("fonts.ps",family="AvantGarde") plot(rnorm(100),main="Random Normal Distribution") dev.off() names(pdfFonts())
看完上述内容,你们掌握R Graph Cookbook 代码怎么写的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!