快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

第55课:实战Hive分析搜索引擎的数据

一、获取数据

创新互联是一家专注于成都网站建设、网站制作与策划设计,大箐山网站建设哪家好?创新互联做网站,专注于网站建设十年,网设计领域的专业建站公司;建站业务涵盖:大箐山等地区。大箐山做网站价格咨询:18980820575

搜狗实验室为我们提供了用户使用搜狗搜索引擎查询的日志,下载地址为

http://download.labs.sogou.com/dl/q.html

第55课:实战Hive分析搜索引擎的数据

本文选择下载精简版。

数据格式如下:

第55课:实战Hive分析搜索引擎的数据

二、上传数据至HDFS

建立hdfs目录

root@spark-master:~# hdfs dfs -mkdir -p /library/sougou

上传文件

root@spark-master:~# hdfs dfs -put SogouQ1.txt /library/sougou
root@spark-master:~# hdfs dfs -put SogouQ2.txt /library/sougou
root@spark-master:~# hdfs dfs -put SogouQ3.txt /library/sougou
root@spark-master:~#

第55课:实战Hive分析搜索引擎的数据

三、使用Hive创建表

root@spark-master:/usr/local/hive/apache-hive-1.2.1/bin# ./hive
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/spark/spark-1.6.0-bin-hadoop2.6/lib/spark-assembly-1.6.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop/hadoop-2.6.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/spark/spark-1.6.0-bin-hadoop2.6/lib/spark-assembly-1.6.0-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

Logging initialized using configuration in jar:file:/usr/local/hive/apache-hive-1.2.1/lib/hive-common-1.2.1.jar!/hive-log4j.properties
hive> CREATE TABLE SOUGOU(ID STRING,WEBSESSION STRING,WORD STRING,S_SEQ INT,C_SEQ INT ,WEBSITE STRING)
    > ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n';
OK
Time taken: 1.995 seconds
hive>

四、加载数据

hive> LOAD DATA INPATH '/library/sougou/SogouQ1.txt' INTO TABLE sougou;
Loading data to table default.sougou
Table default.sougou stats: [numFiles=1, totalSize=108750574]
OK
Time taken: 1.101 seconds

此时,我们再次查看源目录

第55课:实战Hive分析搜索引擎的数据SogouQ1.txt 已经没有啦,该文件跑哪里去了呢?

第55课:实战Hive分析搜索引擎的数据可见,导入数据其实就是将HDFS上的文件移动一个位置而已。所以速度是非常的快。

那可不可以直接将SogouQ1.txt放置在HDFS的/user/hive/warehouse/sougou/中,而不使用LOAD语句?

因为元数据要知道该表中包含了哪些数据文件,所以必须使用load语句。

五、操作数据

5.1 计算count

hive> select count(*) from sougou;
Query ID = root_20160314192407_792e772a-c225-4b37-b948-7050d6b529b4
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Starting Job = job_1457942575478_0002, Tracking URL = http://spark-master:8088/proxy/application_1457942575478_0002/
Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job  -kill job_1457942575478_0002
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2016-03-14 19:24:29,014 Stage-1 map = 0%,  reduce = 0%
2016-03-14 19:24:47,137 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 6.14 sec
2016-03-14 19:25:04,563 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 9.38 sec
MapReduce Total cumulative CPU time: 9 seconds 380 msec
Ended Job = job_1457942575478_0002
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 9.38 sec   HDFS Read: 108757501 HDFS Write: 8 SUCCESS
Total MapReduce CPU Time Spent: 9 seconds 380 msec
OK
1000000
Time taken: 58.603 seconds, Fetched: 1 row(s)

5.2 查看数据

hive> select * from sougou limit 5;
OK
20111230000005	57375476989eea12893c0c3811607bcf		1	1	http://www.qiyi.com/
20111230000005	66c5bb7774e31d0a22278249b26bc83a		3	1	http://www.booksky.org/BookDetail.aspx?BookID=1050804&Level=1
20111230000007	b97920521c78de70ac38e3713f524b50		1	1	http://www.bblianmeng.com/
20111230000008	6961d0c97fe93701fc9c0d861d096cd9		1	1	http://lib.scnu.edu.cn/
20111230000008	f2f5a21c764aebde1e8afcc2871e086f		2	1	http://proxyie.cn/
Time taken: 0.246 seconds, Fetched: 5 row(s)

这里出现了乱码,原因是源文件是gb3212编码,但是Hadoop和Hive都使用UTF8编码。我们将文件转码后再次上传到hdfs中

root@spark-master:~# iconv -t utf-8 -f gb2312 -c SogouQ1.txt > SogouQ1.txt.utf8
root@spark-master:~# rm SogouQ1.txt ; mv SogouQ1.txt.utf8 SogouQ1.txt
root@spark-master:~# hdfs dfs -rm /user/hive/warehouse/sougou/SogouQ1.txt
16/03/14 19:44:25 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = 0 minutes, Emptier interval = 0 minutes.
Deleted /user/hive/warehouse/sougou/SogouQ1.txt
root@spark-master:~# hdfs dfs -put SogouQ1.txt /user/hive/warehouse/sougou/
root@spark-master:~#

再次查看

hive> select * from sougou limit 5;
OK
20111230000005	57375476989eea12893c0c3811607bcf	奇艺高清	1	1	http://www.qiyi.com/
20111230000005	66c5bb7774e31d0a22278249b26bc83a	凡人修仙传	3	1	http://www.booksky.org/BookDetail.aspx?BookID=1050804&Level=1
20111230000007	b97920521c78de70ac38e3713f524b50	本本联盟	1	1	http://www.bblianmeng.com/
20111230000008	6961d0c97fe93701fc9c0d861d096cd9	华南师范大学图书馆	1	1	http://lib.scnu.edu.cn/
20111230000008	f2f5a21c764aebde1e8afcc2871e086f	在线代理	2	1	http://proxyie.cn/
Time taken: 0.151 seconds, Fetched: 5 row(s)

这样就正常啦。

5.2 再来一个复杂点的查询

hive> select count(*) from sougou where s_seq=1 and c_seq=1 and website like '%baidu%';
Query ID = root_20160314194855_8c9aa844-e088-4695-942f-3579718962f6
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Starting Job = job_1457942575478_0003, Tracking URL = http://spark-master:8088/proxy/application_1457942575478_0003/
Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job  -kill job_1457942575478_0003
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2016-03-14 19:49:12,041 Stage-1 map = 0%,  reduce = 0%
2016-03-14 19:49:33,174 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 7.94 sec
2016-03-14 19:49:48,672 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 11.55 sec
MapReduce Total cumulative CPU time: 11 seconds 550 msec
Ended Job = job_1457942575478_0003
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 11.55 sec   HDFS Read: 114834192 HDFS Write: 6 SUCCESS
Total MapReduce CPU Time Spent: 11 seconds 550 msec
OK
59090
Time taken: 55.022 seconds, Fetched: 1 row(s)

查询点击排名

hive> select word,count(*) cnt  from sougou group by word order by cnt desc limit 5;
Query ID = root_20160314202108_58aeca03-8ed6-4626-b15e-af6643c94107
Total jobs = 2
Launching Job 1 out of 2
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Starting Job = job_1457942575478_0007, Tracking URL = http://spark-master:8088/proxy/application_1457942575478_0007/
Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job  -kill job_1457942575478_0007
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2016-03-14 20:21:29,040 Stage-1 map = 0%,  reduce = 0%
2016-03-14 20:21:57,425 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 14.98 sec
2016-03-14 20:22:16,021 Stage-1 map = 100%,  reduce = 68%, Cumulative CPU 20.27 sec
2016-03-14 20:22:19,268 Stage-1 map = 100%,  reduce = 77%, Cumulative CPU 23.16 sec
2016-03-14 20:22:22,593 Stage-1 map = 100%,  reduce = 93%, Cumulative CPU 25.9 sec
2016-03-14 20:22:23,721 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 26.9 sec
MapReduce Total cumulative CPU time: 26 seconds 900 msec
Ended Job = job_1457942575478_0007
Launching Job 2 out of 2
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Starting Job = job_1457942575478_0008, Tracking URL = http://spark-master:8088/proxy/application_1457942575478_0008/
Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job  -kill job_1457942575478_0008
Hadoop job information for Stage-2: number of mappers: 1; number of reducers: 1
2016-03-14 20:22:44,377 Stage-2 map = 0%,  reduce = 0%
2016-03-14 20:23:07,303 Stage-2 map = 100%,  reduce = 0%, Cumulative CPU 9.95 sec
2016-03-14 20:23:25,482 Stage-2 map = 100%,  reduce = 82%, Cumulative CPU 15.54 sec
2016-03-14 20:23:26,563 Stage-2 map = 100%,  reduce = 100%, Cumulative CPU 16.88 sec
MapReduce Total cumulative CPU time: 16 seconds 880 msec
Ended Job = job_1457942575478_0008
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 26.9 sec   HDFS Read: 114832713 HDFS Write: 15044297 SUCCESS
Stage-Stage-2: Map: 1  Reduce: 1   Cumulative CPU: 16.88 sec   HDFS Read: 15048892 HDFS Write: 153 SUCCESS
Total MapReduce CPU Time Spent: 43 seconds 780 msec
OK
百度	7564
baidu	3652
人体艺术	2786
馆陶县县长闫宁的父亲	2388
4399小游戏	2119
Time taken: 140.18 seconds, Fetched: 5 row(s)

六、外部表

我们在第三步创建的表是内部表,内部表创建成功后会在/user/hive/warehouse下创建和表同名的目录。并且当导入数据时,源文件会被放置在表对应的目录下。当进行表删除时,目录和文件一同被删除

hive> drop table sougou;
OK
Time taken: 0.983 seconds

查看hdfs

root@spark-master:~# hdfs dfs -ls /user/hive/warehouse/
Found 1 items
drwxr-xr-x   - root supergroup          0 2016-03-14 17:10 /user/hive/warehouse/t1

Hive还提供了另一种表,称之为外部表。

表创建方式如下:

hive> CREATE EXTERNAL TABLE SOUGOU(ID STRING,WEBSESSION STRING,WORD STRING,S_SEQ INT,C_SEQ INT ,WEBSITE STRING)
    > ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
    > STORED AS TEXTFILE LOCATION '/library/sougou/sougouExternal';
OK
Time taken: 0.123 seconds
root@spark-master:~# hdfs dfs -ls /user/hive/warehouse/
16/03/14 20:02:14 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 1 items
drwxr-xr-x   - root supergroup          0 2016-03-14 17:10 /user/hive/warehouse/t1
root@spark-master:~# hdfs dfs -ls /library/sougou/
16/03/14 20:02:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
-rw-r--r--   3 root supergroup  217441417 2016-03-14 18:55 /library/sougou/SogouQ2.txt
-rw-r--r--   3 root supergroup 1086552775 2016-03-14 18:56 /library/sougou/SogouQ3.txt
drwxr-xr-x   - root supergroup          0 2016-03-14 20:01 /library/sougou/sougouExternal

目录直接创建在指定的位置。

上传文件

root@spark-master:~# hdfs dfs -put SogouQ1.txt /library/sougou/sougouExternal

在Hive中查询数据

hive> select count(*) from sougou;
Query ID = root_20160314200414_b514251b-58d3-40aa-a9ee-4a9cf5eef8f2
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=
In order to set a constant number of reducers:
  set mapreduce.job.reduces=
Starting Job = job_1457942575478_0004, Tracking URL = http://spark-master:8088/proxy/application_1457942575478_0004/
Kill Command = /usr/local/hadoop/hadoop-2.6.0/bin/hadoop job  -kill job_1457942575478_0004
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2016-03-14 20:04:27,514 Stage-1 map = 0%,  reduce = 0%
2016-03-14 20:04:41,458 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 4.66 sec
2016-03-14 20:04:52,341 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 7.26 sec
MapReduce Total cumulative CPU time: 7 seconds 260 msec
Ended Job = job_1457942575478_0004
MapReduce Jobs Launched: 
Stage-Stage-1: Map: 1  Reduce: 1   Cumulative CPU: 7.26 sec   HDFS Read: 114832746 HDFS Write: 8 SUCCESS
Total MapReduce CPU Time Spent: 7 seconds 260 msec
OK
1000000
Time taken: 39.823 seconds, Fetched: 1 row(s)

外部表被删除后,hdfs上的文件并不会被删除

hive> drop table sougou;
OK
Time taken: 0.363 seconds
root@spark-master:~# hdfs dfs -ls /library/sougou/sougouExternal/
16/03/14 20:16:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 1 items
-rw-r--r--   3 root supergroup  114825752 2016-03-14 20:03 /library/sougou/sougouExternal/SogouQ1.txt

当前文章:第55课:实战Hive分析搜索引擎的数据
文章源于:http://6mz.cn/article/gsheji.html

其他资讯