十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章将为大家详细讲解有关python进行矩阵运算的方法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
平泉网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、成都响应式网站建设公司等网站项目制作,到程序开发,运营维护。创新互联自2013年起到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。
python进行矩阵运算的方法:
1、矩阵相乘
>>>a1=mat([1,2]); >>>a2=mat([[1],[2]]); >>>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵 >>> a3 matrix([[5]])
2、矩阵对应元素相乘
>>>a1=mat([1,1]); >>>a2=mat([2,2]); >>>a3=multiply(a1,a2) >>> a3 matrix([[2, 2]])
multiply()函数:数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致
3、矩阵点乘
>>>a1=mat([2,2]); >>>a2=a1*2 >>>a2 matrix([[4, 4]])
4、矩阵求逆
>>>a1=mat(eye(2,2)*0.5) >>> a1 matrix([[ 0.5, 0. ], [ 0. , 0.5]]) >>>a2=a1.I #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵 >>> a2 matrix([[ 2., 0.], [ 0., 2.]])
5、矩阵转置
>>> a1=mat([[1,1],[0,0]]) >>> a1 matrix([[1, 1], [0, 0]]) >>> a2=a1.T >>> a2 matrix([[1, 0], [1, 0]])
6、计算每一列、行的和
>>>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵 >>> a2 matrix([[7, 6]]) >>>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵 >>> a3 matrix([[2], [5], [6]]) >>>a4=sum(a1[1,:]) #计算第一行所有列的和,这里得到的是一个数值 >>> a4 5 #第0行:1+1;第2行:2+3;第3行:4+2
关于python进行矩阵运算的方法就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。