快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

NumPy模块怎么在Python3.5中使用-创新互联

今天就跟大家聊聊有关NumPy模块怎么在Python3.5中使用,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

成都创新互联公司提供高防主机、云服务器、香港服务器、雅安电信机房

1、简介

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

2、多维数组——ndarray

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu

import numpy as np

#1.创建ndarray
#创建一维数组
n1 = np.array([1,2,3,4])
print(n1)

#属性--ndim:维度;dtype:元素类型;shape:数组形状;
# size:数组元素总个数,shape值相乘得到
print("n1维度:",n1.ndim)
print("n1元素类型:",n1.dtype)
print("n1数组形状:",n1.shape)
print("n1数组元素总个数:",n1.size)

#创建二维数组
n2 = np.array([
  [1,2,3,4],
  [5,6,7,8]
])

print(n2)
print("n2维度:",n2.ndim)
print("n2元素类型:",n2.dtype)

#创建三维数组
n3 = np.array([
  [
    [1,2,3,4],
    [5,6,7,8]
  ],
  [
    [10,20,30,40],
    [50,60,70,80]
  ]
])

print(n3)
print("n3数组形状:",n3.shape)
print("n3数组元素总个数:",n3.size)

#2.通过函数创建数组
z = np.zeros((3,2))   #创建指定形状的数组,数值由零填充
print(z)
print(z.dtype)

o = np.ones((2,4))   #创建指定形状的数组,数值由1填充
print(o)

e = np.empty((2,3,2))  #创建指定形状的数组,数值由未初始化的垃圾值填充
print(e)

#3.通过函数计算的方式去创建数组
#一个参数,区间左闭右开,默认起始值为0,步长为1
np1 = np.arange(10)
print(np1)

#两个参数(起始值,终止值),区间左闭右开,默认步长为1
np2 = np.arange(2,10)
print(np2)

#三个参数(起始值,终止值,步长),区间左闭右开,步长为2
np3 = np.arange(2,10,2)
print(np3)

#倒序创建数组元素
np4 = np.arange(10,2,-1)
print(np4)

#全闭区间,参数(起始值,终止值,元素个数),等差数列
np5 = np.linspace(0,10,5)
print(np5)

#全闭区间,以10为底数参数为指数(起始值,终止值,元素个数),等比数列
np6 = np.logspace(0,2,5)
print(np6)

#生成随机数的数组
np7 = np.random.random((2,3))
print(np7)

运行结果:

[1 2 3 4]
n1维度: 1
n1元素类型: int32
n1数组形状: (4,)
n1数组元素总个数: 4
[[1 2 3 4]
 [5 6 7 8]]
n2维度: 2
n2元素类型: int32
[[[ 1  2  3  4]
  [ 5  6  7  8]]

 [[10 20 30 40]
  [50 60 70 80]]]
n3数组形状: (2, 2, 4)
n3数组元素总个数: 16
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]
float64
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
[[[  1.02548961e-305   5.40165714e-067]
  [  1.05952696e-153   9.69380992e+141]
  [  2.17151199e+214   4.34975848e-114]]

 [[  2.08064175e-115   1.91431714e+227]
  [  6.42897811e-109   1.26088822e+232]
  [  9.51634286e-114   5.45764552e-306]]]
[0 1 2 3 4 5 6 7 8 9]
[2 3 4 5 6 7 8 9]
[2 4 6 8]
[10  9  8  7  6  5  4  3]
[  0.    2.5   5.    7.5  10. ]
[   1.            3.16227766   10.           31.6227766   100.        ]
[[ 0.55980469  0.99477652  0.82310732]
 [ 0.97239333  0.1409895   0.57213264]]

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

#修改ndarray形状
np8 = np.arange(0,20,2)
print(np8)
print(np8.size)

np9 = np8.reshape(2,5)
print(np9)
print(np9.size)

#reshape函数是对被修改数组的一个拷贝,共享同一内存,
# 修改其中一个数组会影响里一个
np9[1][2] = 50
print(np8)
print(np9)

# -1表示第二维自动根据元素个数计算
np10 = np8.reshape(5,-1)
print(np10)

#shape直接修改原来数组的形状
np8.shape=(2,-1)
print(np8)

运行结果:

[ 0  2  4  6  8 10 12 14 16 18]
10
[[ 0  2  4  6  8]
 [10 12 14 16 18]]
10
[ 0  2  4  6  8 10 12 50 16 18]
[[ 0  2  4  6  8]
 [10 12 50 16 18]]
[[ 0  2]
 [ 4  6]
 [ 8 10]
 [12 50]
 [16 18]]
[[ 0  2  4  6  8]
 [10 12 50 16 18]]

Numpy基本操作说明

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用

NumPy模块怎么在Python3.5中使用NumPy模块怎么在Python3.5中使用

看完上述内容,你们对NumPy模块怎么在Python3.5中使用有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联成都网站设计公司行业资讯频道,感谢大家的支持。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文名称:NumPy模块怎么在Python3.5中使用-创新互联
文章URL:http://6mz.cn/article/gesic.html

其他资讯