十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实现你想要的功能。更重要的,Python也是数据挖掘和分析的好能手。那么,Python爬虫一般用什么框架比较好?
成都创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都做网站、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的嘉陵网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
一般来讲,只有在遇到比较大型的需求时,才会使用Python爬虫框架。这样的做的主要目的,是为了方便管理以及扩展。本文我将向大家推荐十个Python爬虫框架。
1、Scrapy:Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。它是很强大的爬虫框架,可以满足简单的页面爬取,比如可以明确获知url pattern的情况。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求了。它的特性有:HTML, XML源数据 选择及提取 的内置支持;提供了一系列在spider之间共享的可复用的过滤器(即 Item Loaders),对智能处理爬取数据提供了内置支持。
2、Crawley:高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等。
3、Portia:是一个开源可视化爬虫工具,可让使用者在不需要任何编程知识的情况下爬取网站!简单地注释自己感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。简单来讲,它是基于scrapy内核;可视化爬取内容,不需要任何开发专业知识;动态匹配相同模板的内容。
4、newspaper:可以用来提取新闻、文章和内容分析。使用多线程,支持10多种语言等。作者从requests库的简洁与强大得到灵感,使用Python开发的可用于提取文章内容的程序。支持10多种语言并且所有的都是unicode编码。
5、Python-goose:Java写的文章提取工具。Python-goose框架可提取的信息包括:文章主体内容、文章主要图片、文章中嵌入的任何Youtube/Vimeo视频、元描述、元标签。
6、Beautiful Soup:名气大,整合了一些常用爬虫需求。它是一个可以从HTML或XML文件中提取数据的Python库。它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。Beautiful Soup的缺点是不能加载JS。
7、mechanize:它的优点是可以加载JS。当然它也有缺点,比如文档严重缺失。不过通过官方的example以及人肉尝试的方法,还是勉强能用的。
8、selenium:这是一个调用浏览器的driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。Selenium是自动化测试工具,它支持各种浏览器,包括 Chrome,Safari,Firefox等主流界面式浏览器,如果在这些浏览器里面安装一个 Selenium 的插件,可以方便地实现Web界面的测试. Selenium支持浏览器驱动。Selenium支持多种语言开发,比如 Java,C,Ruby等等,PhantomJS 用来渲染解析JS,Selenium 用来驱动以及与Python的对接,Python进行后期的处理。
9、cola:是一个分布式的爬虫框架,对于用户来说,只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。项目整体设计有点糟,模块间耦合度较高。
10、PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI。采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器。Python脚本控制,可以用任何你喜欢的html解析包。
经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。
Scrapy是一个快速、功能强大的网络爬虫框架。
可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。
简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。
使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。
当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。
PyCharm安装
测试安装:
出现框架版本说明安装成功。
掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!
先上图:
整个结构可以简单地概括为: “5+2”结构和3条数据流
5个主要模块(及功能):
(1)控制所有模块之间的数据流。
(2)可以根据条件触发事件。
(1)根据请求下载网页。
(1)对所有爬取请求进行调度管理。
(1)解析DOWNLOADER返回的响应--response。
(2)产生爬取项--scraped item。
(3)产生额外的爬取请求--request。
(1)以流水线方式处理SPIDER产生的爬取项。
(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。
(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。
2个中间键:
(1)对Engine、Scheduler、Downloader之间进行用户可配置的控制。
(2)修改、丢弃、新增请求或响应。
(1)对请求和爬取项进行再处理。
(2)修改、丢弃、新增请求或爬取项。
3条数据流:
(1):图中数字 1-2
1:Engine从Spider处获得爬取请求--request。
2:Engine将爬取请求转发给Scheduler,用于调度。
(2):图中数字 3-4-5-6
3:Engine从Scheduler处获得下一个要爬取的请求。
4:Engine将爬取请求通过中间件发送给Downloader。
5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。
6:Engine将收到的响应通过中间件发送给Spider处理。
(3):图中数字 7-8-9
7:Spider处理响应后产生爬取项--scraped item。
8:Engine将爬取项发送给Item Pipelines。
9:Engine将爬取请求发送给Scheduler。
任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheduler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。
作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。
Scrapy采用命令行创建和运行爬虫
PyCharm打开Terminal,启动Scrapy:
Scrapy基本命令行格式:
具体常用命令如下:
下面用一个例子来学习一下命令的使用:
1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:
执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。
2.产生一个Scrapy爬虫,以教育部网站为例:
命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。
命令仅用于生成demo.py文件,该文件也可以手动生成。
观察一下demo.py文件:
3.配置产生的spider爬虫,也就是demo.py文件:
4.运行爬虫,爬取网页:
如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。
以上就是Scrapy框架的简单使用了。
Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。
Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。
Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。
以下是爬虫经常用到的库
请求库
1. requests
requests库应该是现在做爬虫最火最实用的库了,非常的人性化。有关于它的使用我之前也写过一篇文章 一起看看Python之Requests库 ,大家可以去看一下。
2.urllib3
urllib3是一个非常强大的http请求库,提供一系列的操作URL的功能。
3.selenium
自动化测试工具。一个调用浏览器的 driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。
对于这个库并非只是Python才能用,像JAVA、Python、C#等都能够使用selenium这个库
4.aiohttp
基于 asyncio 实现的 HTTP 框架。异步操作借助于 async/await 关键字,使用异步库进行数据抓取,可以大大提高效率。
这个属于进阶爬虫时候必须掌握的异步库。有关于aiohttp的详细操作,可以去官方文档:
Python学习网- 专业的python自学、交流公益平台!
解析库
1、beautifulsoup
html 和 XML 的解析,从网页中提取信息,同时拥有强大的API和多样解析方式。一个我经常使用的解析库,对于html的解析是非常的好用。对于写爬虫的人来说这也是必须掌握的库。
2、lxml
支持HTML和XML的解析,支持XPath解析方式,而且解析效率非常高。
3、pyquery
jQuery 的 Python 实现,能够以 jQuery 的语法来操作解析 HTML 文档,易用性和解析速度都很好。
数据存储
1、pymysql
官方文档:
一个纯 Python 实现的 MySQL 客户端操作库。非常的实用、非常的简单。
2、pymongo
官方文档:
顾名思义,一个用于直接连接 mongodb 数据库进行查询操作的库。
3、redisdump
redis-dump是将redis和json互转的工具;redis-dump是基于ruby开发,需要ruby环境,而且新版本的redis-dump要求2.2.2以上的ruby版本,centos中yum只能安装2.0版本的ruby。需要先安装ruby的管理工具rvm安装高版本的ruby。
aiohttp:是纯粹的异步框架,同时支持HTTP客户端和服务端,可以快速实现异步爬虫,并且其中的aiohttp解决了requests的一个痛点,它可以轻松实现自动转码,对于中文编码就很方便了。
asks:Python自带一个异步的标准库asyncio,但这个库很多人觉得并不好用,而里面的ask则是封装了curio和trio的一个http请求库。用起来和
Requests 90%相似,新手也可以很快上手。
vibora:号称是现在最快的异步请求框架,跑分是最快的。写爬虫、写服务器响应都可以用。但这个项目一直在重构,现在页面上还挂着项目正在重构的警告,使用需谨慎。
Pyppeteer:是异步无头浏览器,从跑分来看比Selenium+webdriver快,使用方式是最接近于浏览器的自身的设计接口的。它本身是来自
Google维护的puppeteer,但是按照Python社区的梗,作者进行了封装并且把名字中的u改成了y。
下面为大家介绍一下框架:
Grab:是很流行的渐进式框架,Grab可以说是爬虫界的渐进式框架,又十分简单的用法,封装的也很好,是基于生成器异步的设计。
botflow:概念很新颖,定位成了处理数据工作流的框架,可以用来爬虫、机器学习、量化交易等等。
ruia:比较接近Scrapy的使用方式,异步设计。
一、 请求库
1. requests
requests 类库是第三方库,比 Python 自带的 urllib 类库使用方便和
2. selenium
利用它执行浏览器动作,模拟操作。
3. chromedriver
安装chromedriver来驱动chrome。
4. aiohttp
aiohttp是异步请求库,抓取数据时可以提升效率。
二、 解析库
1. lxml
lxml是Python的一个解析库,支持解析HTML和XML,支持XPath的解析方式,而且解析效率非常高。
2. beautifulsoup4
Beautiful Soup可以使用它更方便的从 HTML 文档中提取数据。
3. pyquery
pyquery是一个网页解析库,采用类似jquery的语法来解析HTML文档。
三、 存储库
1. mysql
2. mongodb
3. redis
四、 爬虫框架scrapy
Scrapy 是一套异步处理框架,纯python实现的爬虫框架,用来抓取网页内容以及各种图片
需要先安装scrapy基本依赖库,比如lxml、pyOpenSSL、Twisted