快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

job函数python,job语法

python apscheduler 每两小时执行一次

from datetime import datetime

为文圣等地区用户提供了全套网页设计制作服务,及文圣网站建设行业解决方案。主营业务为成都网站设计、成都网站建设、外贸网站建设、文圣网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

from apscheduler.schedulers.blocking import BlockingScheduler

def job_function():

print("Hello World")

sched = BlockingScheduler()

sched.add_job(job_function, 'interval', hours=2)

sched.start()

sched.add_job(job_function, 'interval', hours=2, start_date='2010-10-10 09:30:00', end_date='2014-06-15 11:00:00')

from apscheduler.scheduler import BlockingScheduler

@sched.scheduled_job('interval', id='my_job_id', hours=2)

def job_function():

print("Hello World")

sched.add_job(job_function, 'interval', hours=1, jitter=120)

请问这个python脚本哪里出错了?打印出一个无限循环的数

定义函数的时候,我们把参数的名字和位置确定下来,函数的接口定义就完成了。对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数、可变参数和关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

位置参数

我们先写一个计算x2的函数:

def power(x):

return x * x

对于power(x)函数,参数x就是一个位置参数。

当我们调用power函数时,必须传入有且仅有的一个参数x:

power(5)25 power(15)225

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把power(x)修改为power(x, n),用来计算xn,说干就干:

def power(x, n):

s = 1

while n 0:

n = n - 1

s = s * x return s

对于这个修改后的power(x, n)函数,可以计算任意n次方:

power(5, 2)25 power(5, 3)125

修改后的power(x, n)函数有两个参数:x和n,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数x和n。

默认参数

新的power(x, n)函数定义没有问题,但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码因为缺少一个参数而无法正常调用:

power(5)

Traceback (most recent call last):

File "stdin", line 1, in moduleTypeError: power() missing 1 required positional argument: 'n'

Python的错误信息很明确:调用函数power()缺少了一个位置参数n。

这个时候,默认参数就排上用场了。由于我们经常计算x2,所以,完全可以把第二个参数n的默认值设定为2:

def power(x, n=2):

s = 1

while n 0:

n = n - 1

s = s * x return s

这样,当我们调用power(5)时,相当于调用power(5, 2):

power(5)25 power(5, 2)25

而对于n 2的其他情况,就必须明确地传入n,比如power(5, 3)。

从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);

二是如何设置默认参数。

当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入name和gender两个参数:

def enroll(name, gender):

print('name:', name)

print('gender:', gender)

这样,调用enroll()函数只需要传入两个参数:

enroll('Sarah', 'F')

name: Sarah

gender: F

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

我们可以把年龄和城市设为默认参数:

def enroll(name, gender, age=6, city='Beijing'):

print('name:', name)

print('gender:', gender)

print('age:', age)

print('city:', city)

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

enroll('Sarah', 'F')

name: Sarah

gender: F

age: 6city: Beijing

只有与默认参数不符的学生才需要提供额外的信息:

enroll('Bob', 'M', 7)

enroll('Adam', 'M', city='Tianjin')

可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。

有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用enroll('Bob', 'M', 7),意思是,除了name,gender这两个参数外,最后1个参数应用在参数age上,city参数由于没有提供,仍然使用默认值。

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll('Adam', 'M', city='Tianjin'),意思是,city参数用传进去的值,其他默认参数继续使用默认值。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

先定义一个函数,传入一个list,添加一个END再返回:

def add_end(L=[]):

L.append('END') return L

当你正常调用时,结果似乎不错:

add_end([1, 2, 3])[1, 2, 3, 'END'] add_end(['x', 'y', 'z'])['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

add_end()['END']

但是,再次调用add_end()时,结果就不对了:

add_end()['END', 'END'] add_end()['END', 'END', 'END']

很多初学者很疑惑,默认参数是[],但是函数似乎每次都“记住了”上次添加了'END'后的list。

原因解释如下:

Python函数在定义的时候,默认参数L的值就被计算出来了,即[],因为默认参数L也是一个变量,它指向对象[],每次调用该函数,如果改变了L的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的[]了。

定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用None这个不变对象来实现:

def add_end(L=None):

if L is None:

L = []

L.append('END') return L

现在,无论调用多少次,都不会有问题:

add_end()['END'] add_end()['END']

为什么要设计str、None这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

可变参数

在Python函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。

我们以数学题为例子,给定一组数字a,b,c……,请计算a2 + b2 + c2 + ……。

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把a,b,c……作为一个list或tuple传进来,这样,函数可以定义如下:

def calc(numbers):

sum = 0

for n in numbers:

sum = sum + n * n return sum

但是调用的时候,需要先组装出一个list或tuple:

calc([1, 2, 3])14 calc((1, 3, 5, 7))84

如果利用可变参数,调用函数的方式可以简化成这样:

calc(1, 2, 3)14 calc(1, 3, 5, 7)84

所以,我们把函数的参数改为可变参数:

def calc(*numbers):

sum = 0

for n in numbers:

sum = sum + n * n return sum

定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。在函数内部,参数numbers接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数:

calc(1, 2)5 calc()0

如果已经有一个list或者tuple,要调用一个可变参数怎么办?可以这样做:

nums = [1, 2, 3] calc(nums[0], nums[1], nums[2])14

这种写法当然是可行的,问题是太繁琐,所以Python允许你在list或tuple前面加一个*号,把list或tuple的元素变成可变参数传进去:

nums = [1, 2, 3] calc(*nums)14

*nums表示把nums这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。

关键字参数

可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。请看示例:

def person(name, age, **kw):

print('name:', name, 'age:', age, 'other:', kw)

函数person除了必选参数name和age外,还接受关键字参数kw。在调用该函数时,可以只传入必选参数:

person('Michael', 30)

name: Michael age: 30 other: {}

也可以传入任意个数的关键字参数:

person('Bob', 35, city='Beijing')

name: Bob age: 35 other: {'city': 'Beijing'} person('Adam', 45, gender='M', job='Engineer')

name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

关键字参数有什么用?它可以扩展函数的功能。比如,在person函数里,我们保证能接收到name和age这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个dict,然后,把该dict转换为关键字参数传进去:

extra = {'city': 'Beijing', 'job': 'Engineer'} person('Jack', 24, city=extra['city'], job=extra['job'])

name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

当然,上面复杂的调用可以用简化的写法:

extra = {'city': 'Beijing', 'job': 'Engineer'} person('Jack', 24, **extra)

name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

**extra表示把extra这个dict的所有key-value用关键字参数传入到函数的**kw参数,kw将获得一个dict,注意kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra。

命名关键字参数

对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。

仍以person()函数为例,我们希望检查是否有city和job参数:

def person(name, age, **kw):

if 'city' in kw: # 有city参数

pass

if 'job' in kw: # 有job参数

pass

print('name:', name, 'age:', age, 'other:', kw)

但是调用者仍可以传入不受限制的关键字参数:

person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)

如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city和job作为关键字参数。这种方式定义的函数如下:

def person(name, age, *, city, job):

print(name, age, city, job)

和关键字参数**kw不同,命名关键字参数需要一个特殊分隔符*,*后面的参数被视为命名关键字参数。

调用方式如下:

person('Jack', 24, city='Beijing', job='Engineer')

Jack 24 Beijing Engineer

如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*了:

def person(name, age, *args, city, job):

print(name, age, args, city, job)

命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:

person('Jack', 24, 'Beijing', 'Engineer')

Traceback (most recent call last):

File "stdin", line 1, in moduleTypeError: person() takes 2 positional arguments but 4 were given

由于调用时缺少参数名city和job,Python解释器把这4个参数均视为位置参数,但person()函数仅接受2个位置参数。

命名关键字参数可以有缺省值,从而简化调用:

def person(name, age, *, city='Beijing', job):

print(name, age, city, job)

由于命名关键字参数city具有默认值,调用时,可不传入city参数:

person('Jack', 24, job='Engineer')

Jack 24 Beijing Engineer

使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个*作为特殊分隔符。如果缺少*,Python解释器将无法识别位置参数和命名关键字参数:

def person(name, age, city, job):

# 缺少 *,city和job被视为位置参数

pass

参数组合

在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。

比如定义一个函数,包含上述若干种参数:

def f1(a, b, c=0, *args, **kw):

print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)def f2(a, b, c=0, *, d, **kw):

print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)

在函数调用的时候,Python解释器自动按照参数位置和参数名把对应的参数传进去。

f1(1, 2)

a = 1 b = 2 c = 0 args = () kw = {} f1(1, 2, c=3)

a = 1 b = 2 c = 3 args = () kw = {} f1(1, 2, 3, 'a', 'b')

a = 1 b = 2 c = 3 args = ('a', 'b') kw = {} f1(1, 2, 3, 'a', 'b', x=99)

a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99} f2(1, 2, d=99, ext=None)

a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}

最神奇的是通过一个tuple和dict,你也可以调用上述函数:

args = (1, 2, 3, 4) kw = {'d': 99, 'x': '#'} f1(*args, **kw)

a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'} args = (1, 2, 3) kw = {'d': 88, 'x': '#'} f2(*args, **kw)

a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

所以,对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

虽然可以组合多达5种参数,但不要同时使用太多的组合,否则函数接口的可理解性很差。

练习

以下函数允许计算两个数的乘积,请稍加改造,变成可接收一个或多个数并计算乘积:

# -*- coding: utf-8 -*-

# 测试

print('product(5) =', product(5))

print('product(5, 6) =', product(5, 6))

print('product(5, 6, 7) =', product(5, 6, 7))

print('product(5, 6, 7, 9) =', product(5, 6, 7, 9))

if product(5) != 5:

print('测试失败!')

elif product(5, 6) != 30:

print('测试失败!')

elif product(5, 6, 7) != 210:

print('测试失败!')

elif product(5, 6, 7, 9) != 1890:

print('测试失败!')

else:

try:

product()

print('测试失败!')

except TypeError:

print('测试成功!')

Run

python动态添加删除定时任务

可以基于tornado-APScheduler实现添加动态添加/删除/暂停/清除定时任务。

安装:pip3 install apsheduler

1.任何调度器在开始后,不能再次start。不然会出现异常

2.shutdown方法:终结掉对应的调度器,所以代码逻辑里需要检测一下. running方法可以判断调度器的运行状态,如果需要设计delete方法清除某个任务,建议用remove方法,对应代码逻辑需要注意start()不要重复

3.注意BlockingScheduler,如果你想动态添加任务的话,这个调度器是阻塞的,所以每个任务必须是一个守护线程,个人感觉不太方便,建议用其他非阻塞的

4. get_jobs()方法很有用,如果我们加上dir,配合这个方法可以很灵活地配置

5.修改一个周期任务,需要用modify_job方法,根据你的job_id修改

Python由荷兰数学和计算机科学研究学会的Guido van Rossum 于1990 年代初设计,作为一门叫做ABC语言的替代品。 Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。

python 判断正则表达式

看了你的提问,你的要求是:

输入格式:

输入包含两行:

待匹配字符串

正则表达式

输出格式:

若正则表达式能够匹配第一行字符串则输出True,否则,输出False

以下是我依据你的功能需求,个人简单写的一些代码,供你参考:

import re

flg=True

#定义主要工作代码函数

def jobCode(txtstr,regex):

result=re.search(regex,txtstr)

#如果匹配第一行字符串flg为True,否则flg为False

if result.group()==txtstr:

#print(result.group())

return flg==True #返回flg并终止循环

else:

#print(result.group())

return flg==False #返回flg并终止循环

#程序主入口

if __name__=='__main__':

txtstr=str(input("请输入待匹配的字符串:"))

regex=input("请输入正则表达式:")

print(jobCode(txtstr,regex)) #调用定义函数jobCode()

代码应该还能更简洁,具体你自己去完善。

纯手工,如果对你有帮助望采纳!

python的关键字参数是什么概念

def person(name, age, *, city , job):函数不能这么定义,这么定义没有定义关键参数。

def person(name, age,  city , **job):     2个*是定义(可变的)关键参数,关键参数必须放在形参最后,这样才不会报错,除去前面3个参数,后面可传入任意多个关键参数


名称栏目:job函数python,job语法
文章起源:http://6mz.cn/article/dsijeej.html

其他资讯