十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
如果说数据结构是骨架,那么算法就是灵魂。没了骨架,灵魂没有实体寄托;没了灵魂,骨架也是个空壳。两者相辅相成,缺一不可,在开发中起到了砥柱中流的作用。
10年积累的做网站、网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有海东免费网站建设让你可以放心的选择与我们合作。
现在我对各种数据结构和算法做一总结,对比一下它们的效率
1.数据结构篇
1. 如果让你手写个栈和队列,你还会写吗?
2. 开发了那么多项目,你能自己手写个健壮的链表出来吗?
3. 下次面试若再被问到二叉树,希望你能对答如流!
4. 面试还在被红-黑树虐?看完这篇轻松搞定面试官 !
2.排序算法篇
1. 几个经典的基础排序算法,你还记得吗?
2. 手把手教你学会希尔排序,很简单!
3. 快速排序算法到底有多快?
4. 五分钟教你学会归并排序
5. 简单说下二叉树排序
6. 学会堆排序只需要几分钟
7. 图,这个玩意儿竟然还可以用来排序!
掌握了这些经典的数据结构和算法,面试啥的基本上没什么问题了,特别是对于那些应届生来说。接下来再总结一下不同数据结构和算法的效率问题,做一下对比,这也是面试官经常问的问题。
数据结构常用操作效率对比:
常用排序算法效率的对比:
关于经典的数据结构和算法,就总结到这,本文建议收藏,利用等公交、各种排队之时提升自己。这世上天才很少,懒蛋却很多,你若对得起时间,时间便对得起你。
简单的列出10点供你参考吧
1、php基础知识
2、常用函数使用
3、排序算法
4、引用变量的理解
5、session cookie 的理解
6、http请求 get post php://input 使用
7、mysql数据库链表查询,索引优化方案等
8、linux基本命名的使用 crontab,grep ,tail等
9、缓存 redis,memcached等的使用
10、市场上常用的流行PHP框架掌握,熟悉情况
一、简述一下MongoDB的应用场景
mongodb 支持副本集、索引、自动分片,可以保证较高的性能和可用性。
更高的写入负载
默认情况下,MongoDB 更侧重高数据写入性能,而非事务安全,MongoDB 很适合业务系统中有大量 “低价值” 数据的场景。但是应当避免在高事务安全性的系统中使用 MongoDB,除非能从架构设计上保证事务安全。
高可用性
MongoDB 的复副集 (Master-Slave) 配置非常简洁方便,此外,MongoDB 可以快速响应的处理单节点故障,自动、安全地完成故障转移。这些特性使得 MongoDB 能在一个相对不稳定(如云主机)的环境中,保持高可用性。
数据量很大或者未来会变得很大
依赖数据库 (MySQL) 自身的特性,完成数据的扩展是较困难的事,在 MySQL 中,当一个单达表到 5-10GB 时会出现明显的性能降级,此时需要通过数据的水平和垂直拆分、库的拆分完成扩展,使用 MySQL 通常需要借助驱动层或代理层完成这类需求。而 MongoDB 内建了多种数据分片的特性,可以很好地适应大数据量的需求。
基于位置的数据查询
MongoDB 支持二维空间索引,因此可以快速及精确地从指定位置获取数据。
表结构不明确
在一些传统 RDBMS 中,增加一个字段会锁住整个数据库 / 表,或者在执行一个重负载的请求时会明显造成其它请求的性能降级。通常发生在数据表大于 1G 的时候(当大于 1TB 时更甚)。 因 MongoDB 是文档型数据库,为非结构货的文档增加一个新字段是很快速的操作,并且不会影响到已有数据。另外一个好处当业务数据发生变化时,是将不再需要由 DBA 修改表结构。
二、数据库设计经验,为什么进行分表?分库?一般多少数据量开始分表?分库?分库分表的目的?
1、为什么要分表
当一张表的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表。这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕。
分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率。数据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据操作,增删改查的开销也会越来越大;另外,由于无法进行分布式式部署,而一台服务器的资源(CPU、磁盘、内存、IO 等)是有限的,最终数据库所能承载的数据量、数据处理能力都将遭遇瓶颈。
2、分表的方案
做 mysql 集群,有人会问 mysql 集群,根分表有什么关系吗?虽然它不是实际意义上的分表,但是它启到了分表的作用,做集群的意义是什么呢?为一个数据库减轻负担,说白了就是减少 sql 排队队列中的 sql 的数量,举个例子:有 10 个 sql 请求,如果放在一个数据库服务器的排队队列中,他要等很长时间,如果把这 10 个 sql 请求,分配到 5 个数据库服务器的排队队列中,一个数据库服务器的队列中只有 2 个,这样等待时间是不是大大的缩短了呢?
linux mysql proxy 的安装,配置,以及读写分离
mysql replication 互为主从的安装及配置,以及数据同步
优点:扩展性好,没有多个分表后的复杂操作(php 代码)
缺点:单个表的数据量还是没有变,一次操作所花的时间还是那么多,硬件开销大。
三、简述一下数据库主从复制,读写分离
* 什么是主从复制
主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库;
* 主从复制的原理:
1.数据库有个bin-log二进制文件,记录了所有的sql语句。
2.只需要把主数据库的bin-log文件中的sql语句复制。
3.让其从数据的relay-log重做日志文件中再执行一次这些sql语句即可。
* 主从复制的作用
1.做数据的热备份,作为后备数据库,主数据库服务器故障后,可切换到从数据库继续工作,避免数据丢失。
2.架构的扩展。业务量越来越大,I/O访问频率过高,单机无法满足,此时做多库的存储,降低磁盘I/O访问频率,提高单机的I/O性能
3.主从复制是读写分离的基础,使数据库能制成更大 的并发。例如子报表中,由于部署报表的sql语句十分慢,导致锁表,影响前台的服务。如果前台服务使用master,报表使用slave,那么报表sql将不会造成前台所,保证了前台的访问速度。
* 主从复制的几种方式:
1.同步复制:所谓的同步复制,意思是master的变化,必须等待slave-1,slave-2,…,slave-n完成后才能返回。
2.异步复制:如同AJAX请求一样。master只需要完成自己的数据库操作即可。至于slaves是否收到二进制日志,是否完成操作,不用关心。MYSQL的默认设置。
3.半同步复制:master只保证slaves中的一个操作成功,就返回,其他slave不管。
这个功能,是由google为MYSQL引入的。
* 关于读写分离
在完成主从复制时,由于slave是需要同步master的。所以对于insert/delete/update这些更新数据库的操作,应该在master中完成。而select的查询操作,则落下到slave中。
题目描述:
在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
输入描述: array: 待查找的二维数组 target:查找的数字
输出描述:
查找到返回true,查找不到返回false
题目描述:
请实现一个函数,将一个字符串中的空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。
题目描述: 输入一个链表,从尾到头打印链表每个节点的值。
输入描述: 输入为链表的表头
输出描述: 输出为需要打印的“新链表”的表头
题目描述:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
题目描述:
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。
例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
1、题目描述:
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项。n=39
2、题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
3、题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
4、题目描述:
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
1、题目描述:
输入一个整数,输出该数二进制表示中1的个数。其中负数用补码表示。
2、题目描述:
给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。
题目描述:
输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于位于数组的后半部分,并保证奇数和奇数,偶数和偶数之间的相对位置不变。
题目描述:
用两个栈来实现一个队列,完成队列的Push和Pop操作, 队列中的元素为int类型。
题目描述:
输入一个链表,输出该链表中倒数第k个结点。
Redis与Memcached的区别
传统MySQL+ Memcached架构遇到的问题
实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题:
1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间。
2.Memcached与MySQL数据库数据一致性问题。
3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL无法支撑。
4.跨机房cache同步问题。
众多NoSQL百花齐放,如何选择
最近几年,业界不断涌现出很多各种各样的NoSQL产品,那么如何才能正确地使用好这些产品,最大化地发挥其长处,是我们需要深入研究和思考的
问题,实际归根结底最重要的是了解这些产品的定位,并且了解到每款产品的tradeoffs,在实际应用中做到扬长避短,总体上这些NoSQL主要用于解
决以下几种问题
1.少量数据存储,高速读写访问。此类产品通过数据全部in-momery 的方式来保证高速访问,同时提供数据落地的功能,实际这正是Redis最主要的适用场景。
2.海量数据存储,分布式系统支持,数据一致性保证,方便的集群节点添加/删除。
3.这方面最具代表性的是dynamo和bigtable 2篇论文所阐述的思路。前者是一个完全无中心的设计,节点之间通过gossip方式传递集群信息,数据保证最终一致性,后者是一个中心化的方案设计,通过类似一个分布式锁服务来保证强一致性,数据写入先写内存和redo log,然后定期compat归并到磁盘上,将随机写优化为顺序写,提高写入性能。
4.Schema free,auto-sharding等。比如目前常见的一些文档数据库都是支持schema-free的,直接存储json格式数据,并且支持auto-sharding等功能,比如mongodb。
面对这些不同类型的NoSQL产品,我们需要根据我们的业务场景选择最合适的产品。
Redis适用场景,如何正确的使用
前面已经分析过,Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-
backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用
Memcached,何时使用Redis呢?
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1 Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
2 Redis支持数据的备份,即master-slave模式的数据备份。
3 Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
抛开这些,可以深入到Redis内部构造去观察更加本质的区别,理解Redis的设计。
在
Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。Redis只会缓存所有的
key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability =
age*log(size_in_memory)”计
算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以
保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存
中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个
操作,直到子线程完成swap操作后才可以进行修改。
使用Redis特有内存模型前后的情况对比:
VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used
当
从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。
这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行
批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程
池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。
如果希望在海量数据的环境中使用好Redis,我相信理解Redis的内存设计和阻塞的情况是不可缺少的。
补充的知识点:
memcached和redis的比较
1 网络IO模型
Memcached是多线程,非阻塞IO复用的网络模型,分为监听主线程和worker子线程,监听线程监听网络连接,接受请求后,将连接描述
字pipe 传递给worker线程,进行读写IO, 网络层使用libevent封装的事件库,多线程模型可以发挥多核作用,但是引入了cache
coherency和锁的问题,比如,Memcached最常用的stats
命令,实际Memcached所有操作都要对这个全局变量加锁,进行计数等工作,带来了性能损耗。
(Memcached网络IO模型)
Redis使用单线程的IO复用模型,自己封装了一个简单的AeEvent事件处理框架,主要实现了epoll、kqueue和select,
对于单纯只有IO操作来说,单线程可以将速度优势发挥到最大,但是Redis也提供了一些简单的计算功能,比如排序、聚合等,对于这些操作,单线程模型实
际会严重影响整体吞吐量,CPU计算过程中,整个IO调度都是被阻塞住的。
2.内存管理方面
Memcached使用预分配的内存池的方式,使用slab和大小不同的chunk来管理内存,Item根据大小选择合适的chunk存储,内
存池的方式可以省去申请/释放内存的开销,并且能减小内存碎片产生,但这种方式也会带来一定程度上的空间浪费,并且在内存仍然有很大空间时,新的数据也可
能会被剔除,原因可以参考Timyang的文章:
Redis使用现场申请内存的方式来存储数据,并且很少使用free-list等方式来优化内存分配,会在一定程度上存在内存碎片,Redis
跟据存储命令参数,会把带过期时间的数据单独存放在一起,并把它们称为临时数据,非临时数据是永远不会被剔除的,即便物理内存不够,导致swap也不会剔
除任何非临时数据(但会尝试剔除部分临时数据),这点上Redis更适合作为存储而不是cache。
3.数据一致性问题
Memcached提供了cas命令,可以保证多个并发访问操作同一份数据的一致性问题。 Redis没有提供cas 命令,并不能保证这点,不过Redis提供了事务的功能,可以保证一串 命令的原子性,中间不会被任何操作打断。
4.存储方式及其它方面
Memcached基本只支持简单的key-value存储,不支持枚举,不支持持久化和复制等功能
Redis除key/value之外,还支持list,set,sorted set,hash等众多数据结构,提供了KEYS
进行枚举操作,但不能在线上使用,如果需要枚举线上数据,Redis提供了工具可以直接扫描其dump文件,枚举出所有数据,Redis还同时提供了持久化和复制等功能。
5.关于不同语言的客户端支持
在不同语言的客户端方面,Memcached和Redis都有丰富的第三方客户端可供选择,不过因为Memcached发展的时间更久一些,目
前看在客户端支持方面,Memcached的很多客户端更加成熟稳定,而Redis由于其协议本身就比Memcached复杂,加上作者不断增加新的功能
等,对应第三方客户端跟进速度可能会赶不上,有时可能需要自己在第三方客户端基础上做些修改才能更好的使用。
根据以上比较不难看出,当我们不希望数据被踢出,或者需要除key/value之外的更多数据类型时,或者需要落地功能时,使用Redis比使用Memcached更合适。
关于Redis的一些周边功能
Redis除了作为存储之外还提供了一些其它方面的功能,比如聚合计算、pubsub、scripting等,对于此类功能需要了解其实现原
理,清楚地了解到它的局限性后,才能正确的使用,比如pubsub功能,这个实际是没有任何持久化支持的,消费方连接闪断或重连之间过来的消息是会全部丢
失的,又比如聚合计算和scripting等功能受Redis单线程模型所限,是不可能达到很高的吞吐量的,需要谨慎使用。
总的来说Redis作者是一位非常勤奋的开发者,可以经常看到作者在尝试着各种不同的新鲜想法和思路,针对这些方面的功能就要求我们需要深入了解后再使用。
总结:
1.Redis使用最佳方式是全部数据in-memory。
2.Redis更多场景是作为Memcached的替代者来使用。
3.当需要除key/value之外的更多数据类型支持时,使用Redis更合适。
4.当存储的数据不能被剔除时,使用Redis更合适。
谈谈Memcached与Redis(一)
1. Memcached简介
Memcached是以LiveJurnal旗下Danga Interactive公司的Bard
Fitzpatric为首开发的高性能分布式内存缓存服务器。其本质上就是一个内存key-value数据库,但是不支持数据的持久化,服务器关闭之后数
据全部丢失。Memcached使用C语言开发,在大多数像Linux、BSD和Solaris等POSIX系统上,只要安装了libevent即可使
用。在Windows下,它也有一个可用的非官方版本()。Memcached
的客户端软件实现非常多,包括C/C++, PHP, Java, Python, Ruby, Perl, Erlang,
Lua等。当前Memcached使用广泛,除了LiveJournal以外还有Wikipedia、Flickr、Twitter、Youtube和
WordPress等。
在Window系统下,Memcached的安装非常方便,只需从以上给出的地址下载可执行软件然后运行memcached.exe –d
install即可完成安装。在Linux等系统下,我们首先需要安装libevent,然后从获取源码,make make
install即可。默认情况下,Memcached的服务器启动程序会安装到/usr/local/bin目录下。在启动Memcached时,我们可
以为其配置不同的启动参数。
1.1 Memcache配置
Memcached服务器在启动时需要对关键的参数进行配置,下面我们就看一看Memcached在启动时需要设定哪些关键参数以及这些参数的作用。
1)-p num Memcached的TCP监听端口,缺省配置为11211;
2)-U num Memcached的UDP监听端口,缺省配置为11211,为0时表示关闭UDP监听;
3)-s file Memcached监听的UNIX套接字路径;
4)-a mask 访问UNIX套接字的八进制掩码,缺省配置为0700;
5)-l addr 监听的服务器IP地址,默认为所有网卡;
6)-d 为Memcached服务器启动守护进程;
7)-r 最大core文件大小;
8)-u username 运行Memcached的用户,如果当前为root的话需要使用此参数指定用户;
9)-m num 分配给Memcached使用的内存数量,单位是MB;
10)-M 指示Memcached在内存用光的时候返回错误而不是使用LRU算法移除数据记录;
11)-c num 最大并发连数,缺省配置为1024;
12)-v –vv –vvv 设定服务器端打印的消息的详细程度,其中-v仅打印错误和警告信息,-vv在-v的基础上还会打印客户端的命令和相应,-vvv在-vv的基础上还会打印内存状态转换信息;
13)-f factor 用于设置chunk大小的递增因子;
14)-n bytes 最小的chunk大小,缺省配置为48个字节;
15)-t num Memcached服务器使用的线程数,缺省配置为4个;
16)-L 尝试使用大内存页;
17)-R 每个事件的最大请求数,缺省配置为20个;
18)-C 禁用CAS,CAS模式会带来8个字节的冗余;
2. Redis简介
Redis是一个开源的key-value存储系统。与Memcached类似,Redis将大部分数据存储在内存中,支持的数据类型包括:字
符串、哈希表、链表、集合、有序集合以及基于这些数据类型的相关操作。Redis使用C语言开发,在大多数像Linux、BSD和Solaris等
POSIX系统上无需任何外部依赖就可以使用。Redis支持的客户端语言也非常丰富,常用的计算机语言如C、C#、C++、Object-C、PHP、
Python、Java、Perl、Lua、Erlang等均有可用的客户端来访问Redis服务器。当前Redis的应用已经非常广泛,国内像新浪、淘
宝,国外像Flickr、Github等均在使用Redis的缓存服务。
Redis的安装非常方便,只需从获取源码,然后make make
install即可。默认情况下,Redis的服务器启动程序和客户端程序会安装到/usr/local/bin目录下。在启动Redis服务器时,我们
需要为其指定一个配置文件,缺省情况下配置文件在Redis的源码目录下,文件名为redis.conf。
某大公司的PHP面试题
管理提醒: 本帖被 haowubai 执行取消置顶操作(2009-07-30)
1. 如何用php的环境变量得到一个网页地址的内容?ip地址又要怎样得到?
[php]
echo $_SERVER ['PHP_SELF'];
echo $_SERVER ['SERVER_ADDR'];
[/php]
2. 求两个日期的差数,例如2007-2-5 ~ 2007-3-6 的日期差数
[php]
$begin=strtotime('2007-2-5');
$end=strtotime('2007-3-6');
echo ($end-$begin)/(24*3600);
[/php]
3. 请写一个函数,实现以下功能:
字符串“open_door” 转换成 “OpenDoor”、”make_by_id” 转换成 ”MakeById”。
[php]
function changeStyle( $str) {
/*$str = str_replace ( "_", " ", $str );
$str = ucwords ( $str );
$str = str_replace ( " ", "", $str );
return $str;*/
$arrStr=explode('_',$str);
foreach($arrStr as $key=$value){
$arrStr[$key]=strtoupper(substr($value,0,1)).substr($value,1);
}
return implode('',$arrStr);
}
$s = "open_door";
echo changeStyle ( $s );
[/php]
4. 要求写一段程序,实现以下数组$arr1转换成数组$arr2:
[php]$arr1 = array (
'0' = array ('fid' = 1, 'tid' = 1, 'name' ='Name1' ),
'1' = array ('fid' = 1, 'tid' = 2 , 'name' ='Name2' ),
'2' = array ('fid' = 1, 'tid' = 5 , 'name' ='Name3' ),
'3' = array ('fid' = 1, 'tid' = 7 , 'name' ='Name4' ),
'4' = array ('fid' = 3, 'tid' = 9, 'name' ='Name5' )
);
$arr2 = array (
'0' = array (
'0' = array ( 'tid' = 1, 'name' = 'Name1'),
'1' = array ( 'tid' = 2, 'name' = 'Name2'),
'2' = array ( 'tid' = 5, 'name' = 'Name3'),
'3' = array ( 'tid' = 7, 'name' = 'Name4')
),
'1' = array (
'0' = array ( 'tid' = 9, 'name' = 'Name5' )
)
);
?php
$arr1 = array (
'0' = array ('fid' = 1, 'tid' = 1, 'name' ='Name1' ),
'1' = array ('fid' = 1, 'tid' = 2 , 'name' ='Name2' ),
'2' = array ('fid' = 1, 'tid' = 5 , 'name' ='Name3' ),
'3' = array ('fid' = 1, 'tid' = 7 , 'name' ='Name4' ),
'4' = array ('fid' = 3, 'tid' = 9, 'name' ='Name5' )
);
function changeArrayStyle($arr){
foreach($arr as $key=$value){
$result[$value['fid']][]=$value;
}
return array_values($result);
}
$arr2=changeArrayStyle($arr1);
echo "pre";
var_dump($arr2);
[/php]
5. 请简述数据库设计的范式及应用。
一般第3范式就足以,用于表结构的优化,这样做既可以避免应用程序过于复杂同时也避免了SQL语句过于庞大所造成系统效率低下。
ANSWER:
第一范式:若关系模式R的每一个属性是不可再分解的,再属于第一范式。
第二范式:若R属于第一范式,且所有的非码属性都完全函数依赖于码属性,则为第二范式。
第三范式:若R属于第二范式,且所有的非码属性没有一个是传递函数依赖于候选码,则属于第三范式。
6.一个表中的Id有多个记录,把所有这个id的记录查出来,并显示共有多少条记录数,用SQL语句及视图、存储过程分别实现。
存储过程:
[php]
DELIMITER //
create procedure proc_countNum(in columnId int,out rowsNo int)
begin
select count(*) into rowsNo from member where member_id=columnId;
end
call proc_countNum(1,@no);
select @no;
[/php]
视图:
create view v_countNum as select member_id,count(*) as countNum from member group by member_id
select countNum from v_countNum where member_id=1
7 表中有A B C三列,用SQL语句实现:当A列大于B列时选择A列否则选择B列,当B列大于C列时选择B列否则选择C列。
[php]select
case
when first_namemiddle_name then
case when first_namelast_name then first_name
else last_name end
else
case when middle_namelast_name then middle_name else last_name
end
end as name
from member
[/php]
8请简述项目中优化sql语句执行效率的方法,从哪些方面,sql语句性能如何分析?
ANSWER: sql优化有鸟用,不如直接加索引。
9 如果模板是用smarty模板。怎样用section语句来显示一个名为$data的数组。比如:
[php]$data = array(
[0] = array( [id]=8 [name]=’name1′)
[1] = array( [id]=10 [name]=’name2′)
[2] = array( [id]=15 [name]=’name3′)
……
)[/php]
写出在模板页的代码? 若用foreach语句又要怎样显示呢?
占无答案.
10 写一个函数,能够遍历一个文件夹下的所有文件和子文件夹。(目录操作)
[php] ?php
$d = dir(dirname(__file__));
//echo "Handle: " . $d-handle . "\n";
//echo "Path: " . $d-path . "\n";
while ( false !== ($entry = $d-read ()) ) {
echo $entry . "br /";
}
$d-close ();
[/php]
11 两张表 city表和province表。分别为城市与省份的关系表。
city:
id City Provinceid
1 广州 1
2 深圳 1
3 惠州 1
4 长沙 2
5 武汉 3
………. 广州
province:
id Province
1 广东
2 湖南
3 湖北
……….
(1) 写一条sql语句关系两个表,实现:显示城市的基本信息。?
(2) 显示字段:城市id ,城市名, 所属省份 。
如:
Id(城市id) Cityname(城市名) Privence(所属省份)
。。。。。。。。。
。。。。。。。。。
(2)如果要统计每个省份有多少个城市,请用group by 查询出来。?
显示字段:省份id ,省份名,包含多少个城市。
ANSWER:
1.select A.id,A.Cityname,B.Province from city A,province B where A.provinceid=B.id
2.select B.id,B.Province,count(*) as num from city A,province B where A.provinceid=B.id group by B.id
12. 按照你的经验请简述软件工程进行软件开发的步骤。以下工具Rational Rose、PowerDesigner、Project、VSS或CVS、TestDirector使用过那种,有缺点是什么?
公司用dbdesigner及cvs,测试管理工具用的是Mantis
13. 请简述操作系统的线程与进程的区别。列举LINUX下面你使用过的软件?
14. 请使用伪语言结合数据结构冒泡排序法对以下一组数据进行排序 10 2 36 14 10 25 23 85 99 45。
[php]function bubble_sort( $arr){
$number=count($arr);
for($i=0;$i$number-1;$i++){
for($j=0;$j$number-1-$i;$j++){
if($arr[$j]$arr[$j+1]){
$tmp=$arr[$j];
$arr[$j]=$arr[$j+1];
$arr[$j+1]=$tmp;
}
}
}
}
$str="10 2 36 14 10 25 23 85 99 45";
$arr=explode(" ",$str);
bubble_sort($arr);
echo "pre";
var_dump($arr);
[/php]