快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

nosql管理软件,nosql工具

目前最主要的数据库管理软件是什么?

关系数据库:oracle,MSSQL SERVER, MYSQL

10多年的水城网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整水城建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“水城网站设计”,“水城网站推广”以来,每个客户项目都认真落实执行。

NOSQL: HBase, Cassandra,

数据库管理系统软件有哪些

数据库管理系统软件:

1、OracleDatabase

知名的Oracle数据库,一直处于行业领先地位,是许多人认可的、世界上最流行的关系数据库管理系统。

作为“十大数据库管理系统排名榜”之首,Oracle数据库使用方便、功能强大,可扩展性强、数据安全性强,系统可移植性好、稳定性佳,适用于各类大、中、小微机环境。2019年,艾媒金榜发布“企业服务品牌之HRM系统排行榜”,Oracle数据库位列第一。

2、Navicat

Navicat是一套可创建多个连接的数据库管理工具,可以方便管理Oracle、MySQL、PostgreSQL等多个不同类型的数据库,并支持管理腾讯云、阿里云等云数据库。

整体而言,Navicat的功能可以满足专业开发人员的需求,同时对数据库服务器初学者来说又相对容易。曾有一项数据统计,《财富》世界500强中有超过100家公司使用了Navicat。

3、DBeaver

DBeaver是一个通用的数据库管理工具和SQL客户端,具有相对较高的易用性,并且免费、支持跨平台使用、允许扩展插件。

支持的操作系统包括Windows、Linux、MacOS、Solaris、AIX、HPUX;基本特性编辑:支持数据库元数据浏览,支持元数据编辑(包括表/列/键/索引),支持SQL语句和脚本的执行,支持SQL关键字高亮显示,简单友好的显示页面。

4、Mysql

MySQL是最流行的关系型数据库管理系统之一,在WEB应用方面,MySQL也是最好的RDBMS应用软件之一。

作为十大数据库管理系统之一,MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言;其软件采用双授权政策,分社区版、商业版,由于其速度快、体积小、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择MySQL作为网站数据库。

5、PhpMyAdmin

phpMyAdmin是一个以PHP为基础,以Web-Base方式架构在网站主机上的MySQL的数据库管理系统软件,管理者可用Web接口管理MySQL数据库。

功能特性包括但不限于:支持大多数MySQL功能;从CSV和SQL导入数据,将数据导出为各种格式;以各种格式创建数据库布局的图形;使用逐例查询(QBE)创建复杂查询;使用一组预定义的函数将存储的数据转换为任何格式。

6、IBMDB2

DB2是IBM公司开发的关系型数据库系统,主要应用于大型应用系统,具有较好的可伸缩性,支持从大型机到单用户环境。

DB2提供了高层次的数据利用性、完整性、安全性、可恢复性,以及小规模到大规模应用程序的执行能力,具有与平台无关的基本功能和SQL命令。DB2可以在Windows、UNIX和Linux操作系统上运行,是最强大的十大数据库管理系统之一。

7、MSSQLServer

SQL Server是微软推出的关系型数据库管理系统,具有使用方便、可伸缩性佳、与相关软件集成程度高等优点,可跨平台使用。SQL Serve最初是由微软、Sybase 和Ashton-Tate三家公司共同开发的,于1988年推出了第一个OS/2版本。

在Windows NT推出后,Microsoft与Sybase在SQL Server的开发上就分道扬镳了,Microsoft将SQL Server移植到Windows NT系统上,专注于开发推广SQL Server的Windows NT版本。Sybase则较专注于SQL Server在Unix系统上的应用。

8、ApacheCassandra

数据库管理软件哪个好?ApacheCassandra是一款优秀的分布式数据库软件。

该DBMS软件突出特点:一,模式灵活,使用时就像文档存储,用户不必提前解决记录中的字段,可以在系统运行时随意的添加或移除字段,最终提升效率。

二,具有纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台计算机,用户不必重启任何进程,改变应用查询,或手动迁移任何数据。三,多数据中心识别。

9、Redis

Redis是C语言开发的一个开源高性能键值对的内存数据库,可以用来做数据库、缓存、消息中间件等场景,是一种NoSQL的数据库。

其主要特点:性能优秀,数据是存储在内存中,读写速度非常快,可支持并发10WQPS;可作为分布式锁;支持五种数据类型;支持数据持久化到磁盘;可以作为消息中间件使用等。数据缓存是Redis极其重要的一个场景。

10、Sybase

十大数据库管理系统排名榜中的Sybase,是一种典型的UNIX或WindowsNT平台上客户机/服务器环境下的大型数据库系统。系统具有完备的触发器、存储过程、规则以及完整性定义,支持优化查询,具有较好的数据安全性。

Sybase还提供了一套应用程序编程接口和库,可以与非Sybase数据源及服务器集成,允许在多个数据库之间复制数据,适于创建多层应用。

大数据时代的数据管理可以使用哪些软件?

数据是平台运营商的重要资产,可能提供API接口允许第三方有限度地使用,但是显然是为了增强自身的业务,与此目的抵触的行为都会受到约束。

收集数据主要是通过计算机和网络。凡是经过计算机处理的数据都很容易收集,比如浏览器里的搜索、点击、网上购物、……其他数据(比如气温、海水盐度、地震波)可以通过传感器转化成数字信号输入计算机。

收集到的数据一般要先经过整理,常用的软件:Tableau和Impure是功能比较全面的,Refine和Wrangler是比较纯粹的数据整理工具,Weka用于数据挖掘。

Hadoop是一个能够对大量数据进行分布式处理的软件框架。用于统计分析的R语言有个扩展R + Hadoop,可以在Hadoop集群上运行R代码。更具体的自己搜索吧。

可视化输出的工具很多。建议参考wikipedia的“数据可视化”条目。

Tableau、Impure都有可视化功能。R语言也可以绘图。

还有很多可以用来在网页上实现可视化输出的框架或者控件。

大致基于四种技术:Flash(Flex)或者JS(HTML5)或者Java或者ASP.NET(Silverlight)

Flash的有Degrafa、BirdEye、Axiis、Open Flash Chart

JS的有Ajax.org、Sencha Ext JS、Filament、jQchart、Flot、Sparklines、gRaphael、TufteGraph、Exhibit、PlotKit、ExplorerCanvas、MilkChart、Google Chart API、Protovis

Java的有Choosel、google-visualization-java、GWT Chronoscope、JFreeChart

ASP.NET的有Telerik Charts、Visifire、Dundas Chart

目前我比较喜欢d3(Data-Driven Documents),图形种类丰富,有交互能力,你可以去d3js.org看看,有很多种图形的demo。

NoSQL 数据库:何时使用 NoSQL 与 SQL?

NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。

NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。

“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。

在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。

NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。

一些流行的 NoSQL 数据库包括:

随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。

传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。

有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。

但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。

一般来说,在以下情况下,NoSQL 比 SQL 更可取:

许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。

内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。

例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。

大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。

Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。

物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。

Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。

拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。

例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。

nosql数据库一般有哪几种类型?分别用在什么场景

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

它们击碎了性能瓶颈。

NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。

“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。

没有过多的操作。

虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。

Bootstrap支持

因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

优点:

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

主要应用:

Apache HBase

这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。

Apache Storm

用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。

Apache Spark

该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。

Apache Hadoop

该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。

Apache Drill

你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。

Apache Sqoop

也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。

Apache Giraph

这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。

Cloudera Impala

Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。

Gephi

它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。

MongoDB

这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。

十大顶尖公司:

Amazon Web Services

Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。

Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。

Cloudera

Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。

Hortonworks

和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。

IBM

当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”

Intel

和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。

MapR Technologies

MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。

Microsoft

微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。

微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”

Pivotal Software

EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。

Teradata

对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。

AMPLab

通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。

数据库系统有哪些,数据库软件有哪些

目前流行的数据库系统有两类:

一类是关系型的数据库,有Oracle、MySQL、DB2、MS SQL Server,等

一类是所谓的NoSQL,有mongoDB、HBase 等等等

数据库软件,看你怎么定义了,是数据库应用软件,数据库开发软件,数据库管理软件?

基本上所有的ERP等企业管理软件都是基于数据库的,应该属于数据库应用软件的一类

比如Oracle、SAP等等都是知名的ERP软件

还有CRM软件也是基于数据库的。

数据库开发和管理软件就很多了,我个人将其分为两类,

一类是基于java的,一般是通用的,即支持多个数据库;比如AquaDataStudio、DbVisualizer等等等

一类是非java的,大多数都是专门用于某一类数据库的,比如plsqldeveloper、toad等等等;不过其中也有一些软件可以支持多种数据库。比如navicat、RapidSQL等等等


网页名称:nosql管理软件,nosql工具
网站地址:http://6mz.cn/article/dsdhjhs.html

其他资讯