十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
苍穹之边,浩瀚之挚,眰恦之美; 悟心悟性,善始善终,惟善惟道! —— 朝槿《朝槿兮年说》
在黄埔等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站制作、成都网站设计 网站设计制作专业公司,公司网站建设,企业网站建设,品牌网站制作,成都全网营销,成都外贸网站制作,黄埔网站建设费用合理。
在并发编程领域,有两大核心问题:一个是互斥,即同一时刻只允许一个线程访问共享资源;另一个是同步,即线程之间如何通信、协作。
主要原因是,对于多线程实现实现并发,一直以来,多线程都存在2个问题:
因此,在并发编程领域中,一直有一个很重要的设计原则: “ 不要通过内存共享来实现通信,而应该通过通信来实现内存共享。”
简单来说,就是尽可能通过消息通信,而不是内存共享来实现进程或者线程之间的同步。
本文用到的一些关键词语以及常用术语,主要如下:
在Java领域中,我们可以将锁大致分为基于Java语法层面(关键词)实现的锁和基于JDK层面实现的锁。
在Java领域中, 尤其是在并发编程领域,对于多线程并发执行一直有两大核心问题:同步和互斥。其中:
针对对于这两大核心问题,利用管程是能够解决和实现的,因此可以说,管程是并发编程的万能钥匙。
虽然,Java在基于语法层面(synchronized 关键字)实现了对管程技术,但是从使用方式和性能上来说,内置锁(synchronized 关键字)的粒度相对过大,不支持超时和中断等问题。
为了弥补这些问题,从JDK层面对其“重复造轮子”,在JDK内部对其重新设计和定义,甚至实现了新的特性。
在Java领域中,从JDK源码分析来看,基于JDK层面实现的锁大致主要可以分为以下4种方式:
从阅读源码不难发现,在Java SDK 并发包主要通过AbstractQueuedSynchronizer(AQS)实现多线程同步机制的封装与定义,而通过Lock 和 Condition 两个接口来实现管程,其中 Lock 用于解决互斥问题,Condition 用于解决同步问题。
在Java领域中,同步器是专门为多线程并发设计的同步机制,主要是多线程并发执行时线程之间通过某种共享状态来实现同步,只有当状态满足这种条件时线程才往下执行的一种同步机制。
一个标准的AQS同步器主要有同步状态机制,等待队列,条件队列,独占模式,共享模式等五大核心要素组成。
在Java领域中,JDK的JUC(java.util.concurrent.)包中提供了各种并发工具,但是大部分同步工具的实现基于AbstractQueuedSynchronizer类实现,其内部结构主要如下:
我们可以得到一个比较通用的并发同步工具基础模型,大致包含如下几个内容,其中:
综上所述,条件变量和等待队列的作用是解决线程之间的同步问题;共享变量与阻塞队列的作用是解决线程之间的互斥问题。
在并发编程领域,有两大核心问题:一个是互斥,即同一时刻只允许一个线程访问共享资源;另一个是同步,即线程之间如何通信、协作。
综合Java领域中的并发锁的各种实现与应用分析来看,一把锁或者一种锁,基本上都会包含以下几个方面:
综上所述,大致可以根据上述这些方向,我们便可以清楚????️知道Java领域中各种锁实现的基本理论时和实现思想。
在Java领域中,ReentrantLock(可重入锁)是针对于Java多线程并发控制中对一个线程可以多次对某个锁进行加锁操作,主要是基于内置的AQS基础抽象队列同步器实现的一种并发控制工具类。
一般来说,对于同一个线程是否可以重复占有同一个锁对象的角度来分,大致主要可以分为可重入锁与不可重入锁。其中:
ReentrantLock是JDK中显式锁一个主要基于Lock接口API实现的基础实现类,拥有与内置锁(synchronized)相同的并发性和内存语义,同时提供了限时抢占、可中断抢占等一些高级锁特性。
除此之外,ReentrantLock基于内置的AQS基础抽象队列同步器实现,在线程参与锁资源竞争比较激烈的场景下,能表现出比内置锁较佳的性能。
而且,ReentrantLock是一种独占锁,在独占模式下只能逐一使用锁,也就是说,任意时刻最多只会有一个线程持有锁的控制权。
ReentrantLock类最早是在JDK1.5版本提供的,从设计思想上来看,主要包括同步器工作模式,获取锁方法,释放锁方法以及定义Condition队列方法等4个核心要素。其中:
在ReentrantLock类的JDK1.8版本中,对于ReentrantLock的基本实现如下:
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = L;
/**
* ReentrantLock锁-定义支持同步器实现
*/
private final Sync sync;
/**
* ReentrantLock锁-基于AQS定义支持同步器实现
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = - L;
/**
* ReentrantLock锁-定义支持同步器Sync获取锁方法
*/
abstract void lock();
//......其他方法代码
}
/**
* ReentrantLock锁-构造同步器默认工作模式(默认非公平模式)
*/
public ReentrantLock() {
sync = new NonfairSync();
}
/**
* ReentrantLock锁-构造同步器指定工作模式(可选公平/非公平模式)
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
/**
* ReentrantLock锁-获取锁(普通模式)
*/
public void lock() {
sync.lock();
}
/**
* ReentrantLock锁-释放锁
*/
public void unlock() {
sync.release(1);
}
/**
* ReentrantLock锁-创建锁的条件机制
*/
public Condition newCondition() {
return sync.newCondition();
}
//......其他方法代码
}
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -L;
/**
* ReentrantLock锁-内部同步器Sync的内置加锁方法
*/
abstract void lock();
/**
* ReentrantLock锁-内部同步器Sync的非公平获取锁
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
/**
* ReentrantLock锁-内部同步器Sync的尝试释放
*/
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
/**
* ReentrantLock锁-内部同步器Sync的检查线程是否独占
*/
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
/**
* ReentrantLock锁-内部同步器Sync的条件机制
*/
final ConditionObject newCondition() {
return new ConditionObject();
}
/**
* ReentrantLock锁-内部同步器Sync的判断锁持有者
*/
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
/**
* ReentrantLock锁-内部同步器Sync的独占状态
*/
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
/**
* ReentrantLock锁-内部同步器Sync的是否被锁
*/
final boolean isLocked() {
return getState() != 0;
}
/**
* ReentrantLock锁-内部同步器Sync的流化处理对象
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
特别需要注意的是,我们需要重点关注nonfairTryAcquire()方法和tryRelease()方法,其中:
static final class FairSync extends Sync {
private static final long serialVersionUID = -L;
/**
* ReentrantLock锁-公平模式-获取锁
*/
final void lock() {
acquire(1);
}
/**
* ReentrantLock锁-公平模式-尝试获取锁
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
static final class NonfairSync extends Sync {
private static final long serialVersionUID = L;
/**
* ReentrantLock锁-非公平模式-获取锁
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
/**
* ReentrantLock锁-非公平模式-尝试获取锁
*/
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
在ReentrantLock类的JDK1.8版本中,对于ReentrantLock的具体实现如下:
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = L;
/** Synchronizer providing all implementation mechanics */
private final Sync sync;
/**
* ReentrantLock锁-基于AQS定义支持同步器实现
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = - L;
/**
* ReentrantLock锁-定义支持同步器Sync获取锁方法
*/
abstract void lock();
//......其他方法代码
}
/**
* ReentrantLock锁-构造同步器默认工作模式(默认非公平模式)
*/
public ReentrantLock() {
sync = new NonfairSync();
}
/**
* ReentrantLock锁-构造同步器指定工作模式(可选公平/非公平模式)
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
/**
* ReentrantLock锁-获取锁(普通模式)
*/
public void lock() {
sync.lock();
}
/**
* ReentrantLock锁-释放锁
*/
public void unlock() {
sync.release(1);
}
/**
* ReentrantLock锁-创建锁的条件机制
*/
public Condition newCondition() {
return sync.newCondition();
}
/**
* ReentrantLock锁-获取锁(支持可中断机制)
*/
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
/**
* ReentrantLock锁-尝试获取锁(普通模式)
*/
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
/**
* ReentrantLock锁-尝试获取锁(支持超时)
*/
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
/**
* ReentrantLock锁-统计当前线程所持有数量
*/
public int getHoldCount() {
return sync.getHoldCount();
}
/**
* ReentrantLock锁-检测当前线程是否独占
*/
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
/**
* ReentrantLock锁-检测是否被加锁
*/
public boolean isLocked() {
return sync.isLocked();
}
/**
* ReentrantLock锁-检测是否公平模式
*/
public final boolean isFair() {
return sync instanceof FairSync;
}
/**
* ReentrantLock锁-获取当前锁持有线程
*/
protected Thread getOwner() {
return sync.getOwner();
}
/**
* ReentrantLock锁-检测轮询线程是否存在队列中
*/
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
/**
* ReentrantLock锁-检测线程是否存在队列中
*/
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
/**
* ReentrantLock锁-获取队列数量
*/
public final int getQueueLength() {
return sync.getQueueLength();
}
/**
* ReentrantLock锁-获取队列中的所有线程
*/
protected Collection < Thread > getQueuedThreads() {
return sync.getQueuedThreads();
}
/**
* ReentrantLock锁-检测存在条件队列是否入队状态
*/
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject) condition);
}
/**
* ReentrantLock锁-获取等待队列的长度
*/
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject) condition);
}
/**
* ReentrantLock锁-获取等待队列的线程对象
*/
protected Collection < Thread > getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject) condition);
}
}
需要注意的是,在JDK1.8版本之后,对于ReentrantLock的实现有些细微的变化,感兴趣的可自行参考相关版本的源码进行对比分析。
综上所述,从一定意义上讲,ReentrantLock是一种可重入的独占(互斥)锁,属于AQS基础抽象队列同步器中独占模式孵化的产物,支持公平模式与非公平模式,默认采用非公平模式。
通过对Java领域中,JDK内部提供的各种锁的实现来看,一直围绕的核心主要还是基于AQS基础同步器来实现的,但是AQS基础同步器不是一种非它不可的技术标准规范,更多的只是一套技术参考指南。
但是,实际上,Java对于锁的实现与运用远远不止这些,还有相位器(Phaser)和交换器(Exchanger),以及在Java JDK1.8版本之前并发容器ConcurrentHashMap中使用的分段锁(Segment)。
不论是何种实现和应用,在Java并发编程领域来讲,都是围绕线程安全问题的角度去考虑的,只是针对于各种各样的业务场景做的具体的实现。
一定意义上来讲,对线程加锁只是并发编程的实现方式之一,相对于实际应用来说,Java领域中的锁都只是一种单一应用的锁,只是给我们掌握Java并发编程提供一种思想没,三言两语也不可能详尽。
到此为止,这算是对于Java领域中并发锁的最终章,文中表述均为个人看法和个人理解,如有不到之处,忘请谅解也请给予批评指正。
最后,技术研究之路任重而道远,愿我们熬的每一个通宵,都撑得起我们想在这条路上走下去的勇气,未来仍然可期,与各位程序编程君共勉!
版权声明:本文为博主原创文章,遵循相关版权协议,如若转载或者分享请附上原文出处链接和链接来源。