快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

keras读取多标签图像数据的方法-创新互联

不懂keras 读取多标签图像数据的方法?其实想解决这个问题也不难,下面让小编带着大家一起学习怎么去解决,希望大家阅读完这篇文章后大所收获。

创新互联公司是一家业务范围包括IDC托管业务,虚拟空间、主机租用、主机托管,四川、重庆、广东电信服务器租用,珉田数据中心,成都网通服务器托管,成都服务器租用,业务范围遍及中国大陆、港澳台以及欧美等多个国家及地区的互联网数据服务公司。

我所接触的多标签数据,主要包括两类:

1、一张图片属于多个标签,比如,data:一件蓝色的上衣图片.jpg,label:蓝色,上衣。其中label包括两类标签,label1第一类:上衣,裤子,外套。label2第二类,蓝色,黑色,红色。这样两个输出label1,label2都是是分类,我们可以直接把label1和label2整合为一个label,直接编码,比如[蓝色,上衣]编码为[011011]。这样模型的输出也只需要一个输出。实现了多分类。

2、一张图片属于多个标签,但是几个标签不全是分类。比如data:一张结婚现场的图片.jpg,label:高兴,3(表示高兴程度)。这时label1是分类,label2时回归。这种情况就需要多个标签,模型需要多个输出。【其实最好的例子,就是目标检测,不但检测什么物体(分类),还要检测到物体的坐标(回归)】

在这里我主要针对第二种情况加以说明:

keras的ImageDataGenerator.flow_from_directory 只能简单的读取单标签数据。所以我自己写了个data_generate,来生成bathsize多标签数据

#此模块主要用来读取数据集,返回一个数据可迭代对象
#重点是,此模块分批次的把图像读入内存的,而不是一次全读入,有效的减少了内存溢出
import os
import cv2
import numpy as np
import keras
from random import shuffle

#目标图像大小
image_size= (229, 229, 3)
#类别编码
class_dict=dict(zip(['neg','pos','neu'],[0,1,2]))
#处理.txt文件,并加载图片文件夹里的图片名
#txt_path,txt文件路径,data_path,图片文件夹路径

def read_txt(txt_path,data_path):
 # 中间数组
 labels_class = []
 labels_score = []
 with open(txt_path) as f:
 lines_list = f.readlines()
 for lines in lines_list:
  line = lines.split(' ')
  labels_class.append(line[0].rstrip(".jpg"))
  labels_score.append(line[2])
 labels_dict=dict(zip(labels_class,labels_score))
 #处理图片数据集
 all_picture_name = os.listdir(data_path)
 #打乱数据集
 shuffle(all_picture_name)
 all_picture_path=[os.path.join(data_path,one)for one in all_picture_name]
 return all_picture_name,all_picture_path,labels_dict

class data_generate:
 def __init__(self,all_piture_name,all_picture_path,labels_dict,batch_size):
 self.index=0
 self.all_picture_name=all_piture_name
 self.all_picture_path=all_picture_path
 self.labels_dict=labels_dict
 self.batch_size = batch_size
 def get_mini_batch(self):
  while True:
  batch_images=[]
  batch_labels=[]
  batch_class=[]
  batch_score=[]
  for i in range(self.batch_size):
  if(self.index==len(self.all_picture_name)):
   self.index=0

  bgr_image = cv2.imread(self.all_picture_path[self.index])
  if len(bgr_image.shape) == 2: # 若是灰度图则转为三通道
   bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)
  rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
  rgb_image=cv2.resize(rgb_image,(image_size[0], image_size[1]))
  img = np.array(rgb_image)
  img=keras.applications.inception_v3.preprocess_input(img)
  batch_images.append(img)
  #label=[]
  label1=self.all_picture_name[self.index].rstrip(".jpg")
  batch_class.append(keras.utils.to_categorical(class_dict[label1[:3]], 3))
  batch_score.append(np.array(self.labels_dict[label1]))
  #batch_labels.append(label)
  self.index+=1
  batch_images=np.array(batch_images)
  batch_class = np.array(batch_class)
  batch_score = np.array(batch_score)
  #注意label的生成batch_class,一个单独数组,batch_score一个单独的数组
  '''
  注释掉的这段代码生成的label是错误的。
  batch_images=[]
  batch_labels=[]
  for i in range(self.batch_size):
  if(self.index==len(self.images)):
   self.index=0
  batch_images.append(self.images[self.index])
  batch_labels.append(self.labels[self.index])
  self.index+=1
  batch_images=np.array(batch_images)
  batch_labels=np.array(batch_labels)
  yield batch_images,batch_labels
  '''
  yield batch_images,[batch_class,batch_score]

文章名称:keras读取多标签图像数据的方法-创新互联
网站URL:http://6mz.cn/article/dpiejp.html

其他资讯