十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
原文:【 】
在南陵等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站建设、成都网站设计 网站设计制作按需搭建网站,公司网站建设,企业网站建设,成都品牌网站建设,成都营销网站建设,外贸营销网站建设,南陵网站建设费用合理。
如果有解答的不对的,麻烦各位在评论写出来~
go的调度原理是基于GMP模型,G代表一个goroutine,不限制数量;M=machine,代表一个线程,最大1万,所有G任务还是在M上执行;P=processor代表一个处理器,每一个允许的M都会绑定一个G,默认与逻辑CPU数量相等(通过runtime.GOMAXPROCS(runtime.NumCPU())设置)。
go调用过程:
可以能,也可以不能。
因为go存在不能使用==判断类型:map、slice,如果struct包含这些类型的字段,则不能比较。
这两种类型也不能作为map的key。
类似栈操作,后进先出。
因为go的return是一个非原子性操作,比如语句 return i ,实际上分两步进行,即将i值存入栈中作为返回值,然后执行跳转,而defer的执行时机正是跳转前,所以说defer执行时还是有机会操作返回值的。
select的case的表达式必须是一个channel类型,所有case都会被求值,求值顺序自上而下,从左至右。如果多个case可以完成,则会随机执行一个case,如果有default分支,则执行default分支语句。如果连default都没有,则select语句会一直阻塞,直到至少有一个IO操作可以进行。
break关键字可跳出select的执行。
goroutine管理、信息传递。context的意思是上下文,在线程、协程中都有这个概念,它指的是程序单元的一个运行状态、现场、快照,包含。context在多个goroutine中是并发安全的。
应用场景:
例子参考:
waitgroup
channel
len:切片的长度,访问时间复杂度为O(1),go的slice底层是对数组的引用。
cap:切片的容量,扩容是以这个值为标准。默认扩容是2倍,当达到1024的长度后,按1.25倍。
扩容:每次扩容slice底层都将先分配新的容量的内存空间,再将老的数组拷贝到新的内存空间,因为这个操作不是并发安全的。所以并发进行append操作,读到内存中的老数组可能为同一个,最终导致append的数据丢失。
共享:slice的底层是对数组的引用,因此如果两个切片引用了同一个数组片段,就会形成共享底层数组。当sliec发生内存的重新分配(如扩容)时,会对共享进行隔断。详细见下面例子:
make([]Type,len,cap)
map的底层是hash table(hmap类型),对key值进行了hash,并将结果的低八位用于确定key/value存在于哪个bucket(bmap类型)。再将高八位与bucket的tophash进行依次比较,确定是否存在。出现hash冲撞时,会通过bucket的overflow指向另一个bucket,形成一个单向链表。每个bucket存储8个键值对。
如果要实现map的顺序读取,需要使用一个slice来存储map的key并按照顺序进行排序。
利用map,如果要求并发安全,就用sync.map
要注意下set中的delete函数需要使用 delete(map) 来实现,但是这个并不会释放内存,除非value也是一个子map。当进行多次delete后,可以使用make来重建map。
使用sync.Map来管理topic,用channel来做队列。
参考:
多路归并法:
pre class="vditor-reset" placeholder="" contenteditable="true" spellcheck="false"p data-block="0"(1)假设有K路a href=""数据流/a,流内部是有序的,且流间同为升序或降序;
/pp data-block="0"(2)首先读取每个流的第一个数,如果已经EOF,pass;
/pp data-block="0"(3)将有效的k(k可能小于K)个数比较,选出最小的那路mink,输出,读取mink的下一个;
/pp data-block="0"(4)直到所有K路都EOF。
/p/pre
假设文件又1个G,内存只有256M,无法将1个G的文件全部读到内存进行排序。
第一步:
可以分为10段读取,每段读取100M的数据并排序好写入硬盘。
假设写入后的文件为A,B,C...10
第二步:
将A,B,C...10的第一个字符拿出来,对这10个字符进行排序,并将结果写入硬盘,同时记录被写入的字符的文件指针P。
第三步:
将刚刚排序好的9个字符再加上从指针P读取到的P+1位数据进行排序,并写入硬盘。
重复二、三步骤。
go文件读写参考:
保证排序前两个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同的排序叫稳定排序。
快速排序、希尔排序、堆排序、直接选择排序不是稳定的排序算法。
基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序是稳定的排序算法。
参考:
head只请求页面的首部。多用来判断网页是否被修改和超链接的有效性。
get请求页面信息,并返回实例的主体。
参考:
401:未授权的访问。
403: 拒绝访问。
普通的http连接是客户端连接上服务端,然后结束请求后,由客户端或者服务端进行http连接的关闭。下次再发送请求的时候,客户端再发起一个连接,传送数据,关闭连接。这么个流程反复。但是一旦客户端发送connection:keep-alive头给服务端,且服务端也接受这个keep-alive的话,两边对上暗号,这个连接就可以复用了,一个http处理完之后,另外一个http数据直接从这个连接走了。减少新建和断开TCP连接的消耗。这个可以在Nginx设置,
这个keepalive_timout时间值意味着:一个http产生的tcp连接在传送完最后一个响应后,还需要hold住keepalive_timeout秒后,才开始关闭这个连接。
特别注意TCP层的keep alive和http不是一个意思。TCP的是指:tcp连接建立后,如果客户端很长一段时间不发送消息,当连接很久没有收到报文,tcp会主动发送一个为空的报文(侦测包)给对方,如果对方收到了并且回复了,证明对方还在。如果对方没有报文返回,重试多次之后则确认连接丢失,断开连接。
tcp的keep alive可通过
net.ipv4.tcp_keepalive_intvl = 75 // 当探测没有确认时,重新发送探测的频度。缺省是75秒。
net.ipv4.tcp_keepalive_probes = 9 //在认定连接失效之前,发送多少个TCP的keepalive探测包。缺省值是9。这个值乘以tcp_keepalive_intvl之后决定了,一个连接发送了keepalive之后可以有多少时间没有回应
net.ipv4.tcp_keepalive_time = 7200 //当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时。一般设置为30分钟1800
修改:
可以
tcp是面向连接的,upd是无连接状态的。
udp相比tcp没有建立连接的过程,所以更快,同时也更安全,不容易被攻击。upd没有阻塞控制,因此出现网络阻塞不会使源主机的发送效率降低。upd支持一对多,多对多等,tcp是点对点传输。tcp首部开销20字节,udp8字节。
udp使用场景:视频通话、im聊天等。
time-wait表示客户端等待服务端返回关闭信息的状态,closed_wait表示服务端得知客户端想要关闭连接,进入半关闭状态并返回一段TCP报文。
time-wait作用:
解决办法:
close_wait:
被动关闭,通常是由于客户端忘记关闭tcp连接导致。
根据业务来啊~
重要指标是cardinality(不重复数量),这个数量/总行数如果过小(趋近于0)代表索引基本没意义,比如sex性别这种。
另外查询不要使用select *,根据select的条件+where条件做组合索引,尽量实现覆盖索引,避免回表。
僵尸进程:
即子进程先于父进程退出后,子进程的PCB需要其父进程释放,但是父进程并没有释放子进程的PCB,这样的子进程就称为僵尸进程,僵尸进程实际上是一个已经死掉的进程。
孤儿进程:
一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作。
子进程死亡需要父进程来处理,那么意味着正常的进程应该是子进程先于父进程死亡。当父进程先于子进程死亡时,子进程死亡时没父进程处理,这个死亡的子进程就是孤儿进程。
但孤儿进程与僵尸进程不同的是,由于父进程已经死亡,系统会帮助父进程回收处理孤儿进程。所以孤儿进程实际上是不占用资源的,因为它终究是被系统回收了。不会像僵尸进程那样占用ID,损害运行系统。
原文链接:
产生死锁的四个必要条件:
(1) 互斥条件:一个资源每次只能被一个进程使用。
(2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3) 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4) 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
避免方法:
端口占用:lsof -i:端口号 或者 nestat
cpu、内存占用:top
发送信号:kill -l 列出所有信号,然后用 kill [信号变化] [进程号]来执行。如kill -9 453。强制杀死453进程
git log:查看提交记录
git diff :查看变更记录
git merge:目标分支改变,而源分支保持原样。优点:保留提交历史,保留分支结构。但会有大量的merge记录
git rebase:将修改拼接到最新,复杂的记录变得优雅,单个操作变得(revert)很简单;缺点:
git revert:反做指定版本,会新生成一个版本
git reset:重置到某个版本,中间版本全部丢失
etcd、Consul
pprof
节省空间(非叶子节点不存储数据,相对b tree的优势),减少I/O次数(节省的空间全部存指针地址,让树变的矮胖),范围查找方便(相对hash的优势)。
explain
其他的见:
runtime2.go 中关于 p 的定义: 其中 runnext 指针决定了下一个要运行的 g,根据英文的注释大致意思是说:
所以当设置 runtime.GOMAXPROCS(1) 时,此时只有一个 P,创建的 g 依次加入 P, 当最后一个即 i==9 时,加入的最后 一个 g 将会继承当前主 goroutinue 的剩余时间片继续执行,所以会先输出 9, 之后再依次执行 P 队列中其它的 g。
方法一:
方法二:
[图片上传失败...(image-4ef445-1594976286098)]
方法1:to_days,返回给的日期从0开始算的天数。
方法2:data_add。向日期添加指定时间间隔
[图片上传失败...(image-b67b10-1594976286098)]
Go语言标准库中提供了sort包对整型,浮点型,字符串型切片进行排序,检查一个切片是否排好序,使用二分法搜索函数在一个有序切片中搜索一个元素等功能。
关于sort包内的函数说明与使用,请查看
在这里简单讲几个sort包中常用的函数
在Go语言中,对字符串的排序都是按照字节排序,也就是说在对字符串排序时是区分大小写的。
二分搜索算法
Go语言中提供了一个使用二分搜索算法的sort.Search(size,fn)方法:每次只需要比较㏒₂n个元素,其中n为切片中元素的总数。
sort.Search(size,fn)函数接受两个参数:所处理的切片的长度和一个将目标元素与有序切片的元素相比较的函数,该函数是一个闭包,如果该有序切片是升序排列,那么在判断时使用 有序切片的元素 = 目标元素。该函数返回一个int值,表示与目标元素相同的切片元素的索引。
在切片中查找出某个与目标字符串相同的元素索引
因为char *strings[]不是指针而是指针数组,那么
temp = strings[top];
strings[top] = strings[seek];
strings[seek] = temp;
这种交换交换的就是主调函数中的数组中的指针,把指向字符串的指针顺序改变了,当然按次序输出就达到排序目的了……
选择排序提高了冒泡排序的性能,它每遍历一次列表只交换一次数据,即进行一次遍历时找 到最大的项,完成遍历后,再把它换到正确的位置。和冒泡排序一样,第一次遍历后,最大的数 据项就已归位,第二次遍历使次大项归位。这个过程持续进行,一共需要 n-1 次遍历来排好 n 个数 据,因为最后一个数据必须在第 n-1 次遍历之后才能归位。
今天给大家推荐是由Social Explorer团队开源的gods框架,自称"上帝",听这个名字就很霸气,正确的解释是GoDS(Go Data Structures),是数据结构与算法相关的框架。
全能战士,该框架覆盖了数据结构与算法里,大部分容器、集合类的实现, 比golang 的标准开发包提供更丰富的数据结构。
在Go中实现各种数据结构和算法。
吸取了其他算法库数十年的知识和经验。
通过针对给定的一组问题使用最佳算法和数据结构来避免消耗内存,例如, 在TreeMap的情况下,红黑树避免在内存中保留冗余排序的键数组。
结构良好的库,具有简单的原子操作集,胜任复杂的数据操作。
保持库向后兼容
可参考的例子非常多
可以方便集成到产品中.
没有额外的导入.当实现算法的时候,我们通常要在时间效率与内存消耗之间权衡,我们选择在内存首先的情况下,不断优化得到最好的时间效率;线程安全不是重点,应该在更高的应用层上处理。
囊括了列表,栈,图,树等基本数据结构 ,集合实现了HashSet, TreeSet, LinkedHashSet,列表实现ArrayList, SinglyLinkedList, DoublyLinkedList,对栈实现LinkedListStack, ArrayStack,图实现了HashMap, TreeMap, HashBidiMap, TreeBidiMap, LinkedHashMap,树实现了RedBlackTree, AVLTree, BTree,BinaryHeap,都经过性能测试的考验,值得信赖。
对于Golang开发而言,gods对底层数据结构做很好的封装,Social Explorer团队在数据处理领域,数据可视化领域有极具竞争力的产品,相信在数据处理领域有很深的积淀,才创造这么优秀的框架,由于篇幅限制,相关图片展示效果不好,感兴趣的上官网去看看。
官网:
GitHub
希望大家能从emirpasic/gods学到有价值的东西。
愿我们在Go 语言的学习之路上 从此结伴而行
数组是一个由 固定长度 的 特定类型元素 组成的序列,一个数组可以由零个或多个元素组成。 数组是值类型
数组的每个元素都可以通过索引下标来访问,索引下标的范围是从0开始到数组长度减1的位置,内置函数 len() 可以返回数组中元素的个数。
2.类型的打印,结果的第二种打印方式
3.对元素的修改或者赋值
4.判断数组是否相等:长度、类型
4.数组的地址:连续存储的空间
5.数组的赋值、地址、取值
6.数组的默认值
7.数组的初始化
8.数组的逆置
9.求数组的最大值、最小值、平均值
10.对数组字符串进行连接
11.冒泡排序法的实现
12.数组做函数的参数
13.二维数组:赋值和地址
14.二维数组:打印和输出
15. 指针数组,每一个元素都是地址
17.数组的内存分配