快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python伽玛函数 pythonmat函数

python做数据分析怎么样?

 我使用python这门语言也有三年了,被其简洁、易读、强大的库所折服,我已经深深爱上了python。其pythonic语言特性,对人极其友好,可以说,一个完全不懂编程语言的人,看懂python语言也不是难事。

公司主营业务:网站设计制作、网站设计、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出柘城免费做网站回馈大家。

 在数据分析和交互、探索性计算以及数据可视化等方面,相对于R、MATLAB、SAS、Stata等工具,Python都有其优势。近年来,由于Python库的不断发展(如pandas),使其在数据挖掘领域崭露头角。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。

 由于python是一种解释性语言,大部分编译型语言都要比python代码运行速度快,有些同学就因此鄙视python。但是小编认为,python是一门高级语言,其生产效率更高,程序员的时间通常比CPU的时间值钱,因此为了权衡利弊,考虑用python是值得的。

Python强大的计算能力依赖于其丰富而强大的库:

Numpy

Numerical Python的简称,是Python科学计算的基础包。其功能:

1. 快速高效的多维数组对象ndarray。

2. 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。

3. 线性代数运算、傅里叶变换,以及随机数生成。

4. 用于将C、C++、Fortran代码集成到Python的工具。

除了为Python提供快速的数组处理能力,NumPy在数据分析方面还有另外一个主要作用,即作为在算法之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy数组中的数据,无需进行任何数据复制工作。

SciPy

是一组专门解决科学计算中各种标准问题域的包的集合,主要包括下面这些包:

1. scipy.integrate:数值积分例程和微分方程求解器。

2. scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。

3. scipy.optimize:函数优化器(最小化器)以及根查找算法。

4. scipy.signal:信号处理工具。

5. scipy.sparse:稀疏矩阵和稀疏线性系统求解器。

6. scipy.special:SPECFUN(这是一个实现了许多常用数学函数(如伽玛函数)的Fortran库)的包装器。

7. scipy.stats:标准连续和离散概率分布(如密度函数、采样器、连续分布函数等)、各种统计检验方法,以及更好的描述统计法。

8. scipy.weave:利用内联C++代码加速数组计算的工具。

注:NumPy跟SciPy的有机结合完全可以替代MATLAB的计算功能(包括其插件工具箱)。

SymPy

是python的数学符号计算库,用它可以进行数学表达式的符号推导和演算。

pandas

提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

pandas兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。

对于使用R语言进行统计计算的用户,肯定不会对DataFrame这个名字感到陌生,因为它源自于R的data.frame对象。但是这两个对象并不相同。R的data.frame对象所提供的功能只是DataFrame对象所提供的功能的一个子集。也就是说pandas的DataFrame功能比R的data.frame功能更强大。

matplotlib

是最流行的用于绘制数据图表的Python库。它最初由John D. Hunter(JDH)创建,目前由一个庞大的开发人员团队维护。它非常适合创建出版物上用的图表。它跟IPython(马上就会讲到)结合得很好,因而提供了一种非常好用的交互式数据绘图环境。绘制的图表也是交互式的,你可以利用绘图窗口中的工具栏放大图表中的某个区域或对整个图表进行平移浏览。

TVTK

是python数据三维可视化库,是一套功能十分强大的三维数据可视化库,它提供了Python风格的API,并支持Trait属性(由于Python是动态编程语言,其变量没有类型,这种灵活性有助于快速开发,但是也有缺点。而Trait库可以为对象的属性添加检校功能,从而提高程序的可读性,降低出错率。) 和NumPy数组。此库非常庞大,因此开发公司提供了一个查询文档,用户可以通过下面语句运行它:

from enthought.tvtk.toolsimport tvtk_doc

tvtk_doc.main()

Scikit-Learn

是基于python的机器学习库,建立在NumPy、SciPy和matplotlib基础上,操作简单、高效的数据挖掘和数据分析。其文档、实例都比较齐全。

小编建议:初学者使用python(x, y),其是一个免费的科学和工程开发包,提供数学计算、数据分析和可视化展示。非常方便!

其官网:(由于某种原因,国内上不去,需要翻墙)

下载地址:(小编到网上搜到的一个地址,亲测可以用)

下图展示了python(x, y) 强大功能。

什么叫伽马函数?

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。

Gamma 函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德、魏尔斯特拉斯、刘维尔等等。这个函数在现代数学分析中被深入研究,在概率论中也是无处不在,很多统计分布都和这个函数相关。Gamma 函数作为阶乘的推广,首先它也有和 Stirling 公式类似的一个结论:即当x取的数越大,Gamma 函数就越趋向于 Stirling 公式,所以当x足够大时,可以用Stirling 公式来计算Gamma 函数值。

扩展资料:

函数应用:在Matlab中的应用

其表示N在N-1到0范围内的整数阶乘。

公式为:gamma(N)=(N-1)*(N-2)*...*2*1

例如:

gamma(6)=5*4*3*2*1

ans=120

参考资料来源:百度百科-伽玛函数

Python--math库

Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算,若需计算复数,可使用cmath模块(本文不赘述)。

使用dir函数,查看math库中包含的所有内容:

1) math.pi    # 圆周率π

2) math.e    #自然对数底数

3) math.inf    #正无穷大∞,-math.inf    #负无穷大-∞

4) math.nan    #非浮点数标记,NaN(not a number)

1) math.fabs(x)    #表示X值的绝对值

2) math.fmod(x,y)    #表示x/y的余数,结果为浮点数

3) math.fsum([x,y,z])    #对括号内每个元素求和,其值为浮点数

4) math.ceil(x)    #向上取整,返回不小于x的最小整数

5)math.floor(x)    #向下取整,返回不大于x的最大整数

6) math.factorial(x)    #表示X的阶乘,其中X值必须为整型,否则报错

7) math.gcd(a,b)    #表示a,b的最大公约数

8)  math.frexp(x)      #x = i *2^j,返回(i,j)

9) math.ldexp(x,i)    #返回x*2^i的运算值,为math.frexp(x)函数的反运算

10) math.modf(x)    #表示x的小数和整数部分

11) math.trunc(x)    #表示x值的整数部分

12) math.copysign(x,y)    #表示用数值y的正负号,替换x值的正负号

13) math.isclose(a,b,rel_tol =x,abs_tol = y)    #表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a,b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用,abs_tol必须至少为0。

14) math.isfinite(x)    #表示当x不为无穷大时,返回True,否则返回False

15) math.isinf(x)    #当x为±∞时,返回True,否则返回False

16) math.isnan(x)    #当x是NaN,返回True,否则返回False

1) math.pow(x,y)    #表示x的y次幂

2) math.exp(x)    #表示e的x次幂

3) math.expm1(x)    #表示e的x次幂减1

4) math.sqrt(x)    #表示x的平方根

5) math.log(x,base)    #表示x的对数值,仅输入x值时,表示ln(x)函数

6) math.log1p(x)    #表示1+x的自然对数值

7) math.log2(x)    #表示以2为底的x对数值

8) math.log10(x)    #表示以10为底的x的对数值

1) math.degrees(x)    #表示弧度值转角度值

2) math.radians(x)    #表示角度值转弧度值

3) math.hypot(x,y)    #表示(x,y)坐标到原点(0,0)的距离

4) math.sin(x)    #表示x的正弦函数值

5) math.cos(x)    #表示x的余弦函数值

6) math.tan(x)    #表示x的正切函数值

7)math.asin(x)    #表示x的反正弦函数值

8) math.acos(x)    #表示x的反余弦函数值

9) math.atan(x)    #表示x的反正切函数值

10) math.atan2(y,x)    #表示y/x的反正切函数值

11) math.sinh(x)    #表示x的双曲正弦函数值

12) math.cosh(x)    #表示x的双曲余弦函数值

13) math.tanh(x)    #表示x的双曲正切函数值

14) math.asinh(x)    #表示x的反双曲正弦函数值

15) math.acosh(x)    #表示x的反双曲余弦函数值

16) math.atanh(x)    #表示x的反双曲正切函数值

1)math.erf(x)    #高斯误差函数

2) math.erfc(x)    #余补高斯误差函数

3) math.gamma(x)    #伽马函数(欧拉第二积分函数)

4) math.lgamma(x)    #伽马函数的自然对数

excel gammainv函数对应python函数?

1.GAMMA.INV函数的功能 计算伽玛累积分布函数的反函数值。

2.GAMMA.INV函数的语法结构 GAMMA.INV(probability,...

3.GAMMA.INV函数的使用方法 以如下表格为例,演示该函数的使用方法;

4.第一步,在输出结果的单元格,输入函数公式,即 =GAMMA.INV;

5.第二步,设定参数Probability;

python3的sympy

print(“字符串”),5/2和5//2的结果是不同的5/2为2.5,5//2为2.

python2需要导入from_future_import division执行普通的除法。

1/2和1//2的结果0.5和0.

%号为取模运算。

乘方运算为2**3,-2**3和-(2**3)是等价的。

from sympy import*导入库

x,y,z=symbols('x y z'),定义变量

init_printing(use_unicode=True)设置打印方式。

python的内部常量有pi,

函数simplify,simplify(sin(x)**2 + cos(x)**2)化简结果为1,

simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化简结果为x-1。化简伽马函数。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1)。

expand((x + 1)**2)展开多项式。

expand((x + 1)*(x - 2) - (x - 1)*x)

因式分解。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2

from_future_import division

x,y,z,t=symbols('x y z t')定义变量,

k, m, n = symbols('k m n', integer=True)定义三个整数变量。

f, g, h = symbols('f g h', cls=Function)定义的类型为函数。

factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一个列表,表示因式的幂,(1, [(z, 1), (x + 2*y, 2)])

expand((cos(x) + sin(x))**2)展开多项式。

expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3,collected_expr = collect(expr, x)将x合并。将x元素按阶次整合。

collected_expr.coeff(x, 2)直接取出变量collected_expr的x的二次幂的系数。

cancel()is more efficient thanfactor().

cancel((x**2 + 2*x + 1)/(x**2 + x))

,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)

expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)

asin(1)

trigsimp(sin(x)**2 + cos(x)**2)三角函数表达式化简,

trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)

trigsimp(sin(x)*tan(x)/sec(x))

trigsimp(cosh(x)**2 + sinh(x)**2)双曲函数。

三角函数展开,expand_trig(sin(x + y)),acos(x),cos(acos(x)),expand_trig(tan(2*x))

x, y = symbols('x y', positive=True)正数,a, b = symbols('a b', real=True)实数,z, t, c = symbols('z t c')定义变量的方法。

sqrt(x) == x**Rational(1, 2)判断是否相等。

powsimp(x**a*x**b)幂函数的乘法,不同幂的乘法,必须先定义a和b。powsimp(x**a*y**a)相同幂的乘法。

powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.

powsimp(t**c*z**c, force=True)这样的话就可以得到化简过的式子。声明强制进行化简。

(z*t)**2,sqrt(x*y)

第一个展开expand_power_exp(x**(a + b)),expand_power_base((x*y)**a)展开,

expand_power_base((z*t)**c, force=True)强制展开。

powdenest((x**a)**b),powdenest((z**a)**b),powdenest((z**a)**b, force=True)

ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),

expand_log(log(x*y))展开为log(x) + log(y),但是python3没有。这是因为需要将x定义为positive。这是必须的,否则不会被展开。expand_log(log(x/y)),expand_log(log(x**n))

As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions。

expand_log(log(z**2), force=True),强制展开。

logcombine(log(x) + log(y)),logcombine(n*log(x)),logcombine(n*log(z), force=True)。

factorial(n)阶乘,binomial(n, k)等于c(n,k),gamma(z)伽马函数。

hyper([1, 2], [3], z),

tan(x).rewrite(sin)得到用正弦表示的正切。factorial(x).rewrite(gamma)用伽马函数重写阶乘。

expand_func(gamma(x + 3))得到,x*(x + 1)*(x + 2)*gamma(x),

hyperexpand(hyper([1, 1], [2], z)),

combsimp(factorial(n)/factorial(n - 3))化简,combsimp(binomial(n+1, k+1)/binomial(n, k))化简。combsimp(gamma(x)*gamma(1 - x))

自定义函数

def list_to_frac(l):

expr = Integer(0)

for i in reversed(l[1:]):

expr += i

expr = 1/expr

return l[0] + expr

list_to_frac([x, y, z])结果为x + 1/z,这个结果是错误的。

syms = symbols('a0:5'),定义syms,得到的结果为(a0, a1, a2, a3, a4)。

这样也可以a0, a1, a2, a3, a4 = syms, 可能是我的操作错误 。发现python和自动缩进有关,所以一定看好自动缩进的距离。list_to_frac([1, 2, 3, 4])结果为43/30。

使用cancel可以将生成的分式化简,frac = cancel(frac)化简为一个分数线的分式。

(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)

a0, a1, a2, a3, a4 = syms定义a0到a4,frac = apart(frac, a0)可将a0提出来。frac=1/(frac-a0)将a0去掉取倒。frac = apart(frac, a1)提出a1。

help("modules"),模块的含义,help("modules yourstr")模块中包含的字符串的意思。,

help("topics"),import os.path + help("os.path"),help("list"),help("open")

# -*- coding: UTF-8 -*-声明之后就可以在ide中使用中文注释。

定义

l = list(symbols('a0:5'))定义列表得到[a0, a1, a2, a3, a4]

fromsympyimport*

x,y,z=symbols('x y z')

init_printing(use_unicode=True)

diff(cos(x),x)求导。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等价。

diff(expr, x, y, 2, z, 4)求出表达式的y的2阶,z的4阶,x的1阶导数。和diff(expr, x, y, y, z, 4)等价。expr.diff(x, y, y, z, 4)一步到位。deriv = Derivative(expr, x, y, y, z, 4)求偏导。但是不显示。之后用deriv.doit()即可显示

integrate(cos(x), x)积分。定积分integrate(exp(-x), (x, 0, oo))无穷大用2个oo表示。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重积分。print(expr)print的使用。

expr = Integral(log(x)**2, x),expr.doit()积分得到x*log(x)**2 - 2*x*log(x) + 2*x。

integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -

exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)连用。

limit(sin(x)/x,x,0),not-a-number表示nan算不出来,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()连用。左右极限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-')。。

Series Expansion级数展开。expr = exp(sin(x)),expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()将无穷小移除。exp(x-6).series(x,x0=6),,得到

-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5阶。

f=Function('f')定义函数变量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2阶,,as_finite_diff(dfdx)函数和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0)。

Eq(x, y),,solveset(Eq(x**2, 1), x)解出来x,当二式相等。和solveset(Eq(x**2 - 1, 0), x)等价。solveset(x**2 - 1, x)

solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出来定义域。solveset(exp(x), x)    # No solution exists解出EmptySet()表示空集。

等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩阵法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}

A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**2 + 9*x, x)解多项式。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1},有2个3的重根,1个0根。solve([x*y - 1, x - 2], x, y)解出坐标。

f, g = symbols('f g', cls=Function)函数的定义,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))结合。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出来Eq(f(x) + cos(f(x)), C1),,

Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示。M=Matrix([[1,2,3],[3,2,1]])

N=Matrix([0,1,1])

M*N符合矩阵的乘法。M.shape显示矩阵的行列数。

M.row(0)获取M的第0行。M.col(-1)获取倒数第一列。

M.col_del(0)删掉第1列。M.row_del(1)删除第二行,序列是从0开始的。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列。

M+N矩阵相加,M*N,3*M,M**2,M**-1,N**-1表示求逆。M.T求转置。

eye(3)单位。zeros(2, 3),0矩阵,ones(3, 2)全1,diag(1, 2, 3)对角矩阵。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([

[-1, 0, 0, 0],

[ 0, 1, 1, 0],

[ 0, 1, 1, 0],

[ 0, 0, 0, 5],

[ 0, 0, 0, 7],

[ 0, 0, 0, 5]])矩阵。

Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])

一行一行显示,,M.det()求行列式。M.rref()矩阵化简。得到结果为Matrix([

[1, 0,  1,  3],

[0, 1, 2/3, 1/3],

[0, 0,  0,  0]]), [0, 1])。

M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]),M.nullspace()

Columnspace

M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])

M = Matrix([[3, -2,  4, -2], [5,  3, -3, -2], [5, -2,  2, -2], [5, -2, -3,  3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2},,This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.

P, D = M.diagonalize(),P得Matrix([

[0, 1, 1,  0],

[1, 1, 1, -1],

[1, 1, 1,  0],

[1, 1, 0,  1]]),,D为Matrix([

[-2, 0, 0, 0],

[ 0, 3, 0, 0],

[ 0, 0, 5, 0],

[ 0, 0, 0, 5]])

P*D*P**-1 == M返回为True。lamda = symbols('lamda')。

lamda = symbols('lamda')定义变量,p = M.charpoly(lamda)和factor(p)

expr = x**2 + x*y,srepr(expr)可以将表达式说明计算法则,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"。。

x = symbols('x')和x = Symbol('x')是一样的。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))"。Pow(x, 2)和Mul(x, y)得到x**2。x*y

type(2)得到class 'int',type(sympify(2))得到class 'sympy.core.numbers.Integer'..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))"。。。

Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"。。Pow函数为幂次。

expr = Add(x, x),expr.func。。Integer(2).func,class 'sympy.core.numbers.Integer',,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到class 'sympy.core.mul.Mul',,expr.args将表达式分解为得到(3, x, y**2),,expr.func(*expr.args)合并。expr == expr.func(*expr.args)返回True。expr.args[2]得到y**2,expr.args[1]得到x,expr.args[0]得到3.。

expr.args[2].args得到(y, 2)。。y.args得到空括号。Integer(2).args得到空括号。

from sympy import *

E**(I*pi)+1,可以看出,I和E,pi已将在sympy内已定义。

x=Symbol('x'),,expand( E**(I*x) )不能展开,expand(exp(I*x),complex=True)可以展开,得到I*exp(-im(x))*sin(re(x)) + exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)将x定义为实数。再展开expand(exp(I*x),complex=True)得到。I*sin(x) + cos(x)。。

tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)打印出来可读性好,print(tmp)可读性不好。。pprint将公式用更好看的格式打印出来,,pprint( series( cos(x), x, 0, 10) )

integrate(x*sin(x), x),,定积分integrate(x*sin(x), (x, 0, 2*pi))。。

用双重积分求解球的体积。

x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))计算球的体积。计算不来,是因为sympy不知道r是大于0的。r = symbols('r', positive=True)这样定义r即可。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到。circle_area=circle_area.subs(r,sqrt(r**2-x**2))将r替换。

integrate(circle_area,(x,-r,r))再积分即可。

expression.sub([(x,y),(y,x)])又换到原来的状况了。

expression.subs(x, y),,将算式中的x替换成y。。

expression.subs({x:y,u:v}) : 使用字典进行多次替换。。

expression.subs([(x,y),(u,v)]) : 使用列表进行多次替换。。


本文标题:python伽玛函数 pythonmat函数
URL分享:http://6mz.cn/article/doscsoc.html

其他资讯