十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
随机函数就是产生数的函数,c语言里有rand(),srand()等函数。
创新互联公司网站建设服务商,为中小企业提供成都网站制作、网站设计、外贸网站建设服务,网站设计,成都网站托管等一站式综合服务型公司,专业打造企业形象网站,让您在众多竞争对手中脱颖而出创新互联公司。
用法
#include
#include
#include
void main( void )
{
int i,k;
srand( (unsigned)time( NULL ) ); //用系统时间当种子,对随机函数进行初始化
for( i = 0; i 10;i++ )
{
k=rand()%100; //产生各个随机数
printf( " k=%d/n", k );
}
}
详述
rand() srand() 头文件为#include
标准C库中函数rand()可以生成0~RAND_MAX之间的一个随机数,其中RAND_MAX 是stdlib.h 中定义的一个整数,它与系统有关。
rand()函数没有输入参数,直接通过表达式rand()来引用,rand()%n是产生的随机数对n取余,起到了取0到n-1之间随机数的作用;
例如可以用下面的语句来打印两个随机数: printf("Random numbers are: %i %i/n",rand(),rand());
因为rand()函数是按指定的顺序来产生整数,而未指定运行的种子,所以rand()每次使用的都是同一个种子来产生随机数序列,因此每次执行上面的语句都打印相同的两个值,所以说C语言的随机并不是正真意义上的随机。
为了时程序在每次执行时都能生成一个新序列的随机值,我们通常通过为随机数生成器提供一粒新的随机种子。函数 srand()(来自stdlib.h)可以为随机数生成器播散种子。只要种子不同rand()函数就会产生不同的随机数序列。srand()称为随机数生成器的初始化器。
srand( (unsigned)time( NULL ) ); 用系统时间当种子,对随机函数进行初始化,每次的系统时间不同,所以种子也就不同,产生的随机数序列也就不同。
本文由青松原创并依GPL-V2及其后续版本发放,转载请注明出处且应包含本行声明。\x0d\x0a\x0d\x0aC++中常用rand()函数生成随机数,但严格意义上来讲生成的只是伪随机数(pseudo-random integral number)。生成随机数时需要我们指定一个种子,如果在程序内循环,那么下一次生成随机数时调用上一次的结果作为种子。但如果分两次执行程序,那么由于种子相同,生成的“随机数”也是相同的。\x0d\x0a\x0d\x0a在工程应用时,我们一般将系统当前时间(Unix时间)作为种子,这样生成的随机数更接近于实际意义上的随机数。给一下例程如下:\x0d\x0a\x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0ausing namespace std;\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0a double random(double,double);\x0d\x0a srand(unsigned(time(0)));\x0d\x0a for(int icnt = 0; icnt != 10; ++icnt)\x0d\x0a cout "No." icnt+1 ": " int(random(0,10)) endl;\x0d\x0a return 0;\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0a return start+(end-start)*rand()/(RAND_MAX + 1.0);\x0d\x0a}\x0d\x0a/* 运行结果\x0d\x0a* No.1: 3\x0d\x0a* No.2: 9\x0d\x0a* No.3: 0\x0d\x0a* No.4: 9\x0d\x0a* No.5: 5\x0d\x0a* No.6: 6\x0d\x0a* No.7: 9\x0d\x0a* No.8: 2\x0d\x0a* No.9: 9\x0d\x0a* No.10: 6\x0d\x0a*/\x0d\x0a利用这种方法能不能得到完全意义上的随机数呢?似乎9有点多哦?却没有1,4,7?!我们来做一个概率实验,生成1000万个随机数,看0-9这10个数出现的频率是不是大致相同的。程序如下:\x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0ausing namespace std;\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0a double random(double,double);\x0d\x0a int a[10] = ;\x0d\x0a const int Gen_max = 10000000;\x0d\x0a srand(unsigned(time(0)));\x0d\x0a \x0d\x0a for(int icnt = 0; icnt != Gen_max; ++icnt)\x0d\x0a switch(int(random(0,10)))\x0d\x0a {\x0d\x0a case 0: a[0]++; break;\x0d\x0a case 1: a[1]++; break;\x0d\x0a case 2: a[2]++; break;\x0d\x0a case 3: a[3]++; break;\x0d\x0a case 4: a[4]++; break;\x0d\x0a case 5: a[5]++; break;\x0d\x0a case 6: a[6]++; break;\x0d\x0a case 7: a[7]++; break;\x0d\x0a case 8: a[8]++; break;\x0d\x0a case 9: a[9]++; break;\x0d\x0a default: cerr "Error!" endl; exit(-1);\x0d\x0a }\x0d\x0a \x0d\x0a for(int icnt = 0; icnt != 10; ++icnt)\x0d\x0a cout icnt ": " setw(6) setiosflags(ios::fixed) setprecision(2) double(a[icnt])/Gen_max*100 "%" endl;\x0d\x0a \x0d\x0a return 0;\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0a return start+(end-start)*rand()/(RAND_MAX + 1.0);\x0d\x0a}\x0d\x0a/* 运行结果\x0d\x0a* 0: 10.01%\x0d\x0a* 1: 9.99%\x0d\x0a* 2: 9.99%\x0d\x0a* 3: 9.99%\x0d\x0a* 4: 9.98%\x0d\x0a* 5: 10.01%\x0d\x0a* 6: 10.02%\x0d\x0a* 7: 10.01%\x0d\x0a* 8: 10.01%\x0d\x0a* 9: 9.99%\x0d\x0a*/\x0d\x0a可知用这种方法得到的随机数是满足统计规律的。\x0d\x0a\x0d\x0a另:在Linux下利用GCC编译程序,即使我执行了1000000次运算,是否将random函数定义了inline函数似乎对程序没有任何影响,有理由相信,GCC已经为我们做了优化。但是冥冥之中我又记得要做inline优化得加O3才行...\x0d\x0a\x0d\x0a不行,于是我们把循环次数改为10亿次,用time命令查看执行时间:\x0d\x0achinsung@gentoo ~/workspace/test/Debug $ time ./test \x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal 2m7.768s\x0d\x0auser 2m4.405s\x0d\x0asys 0m0.038s\x0d\x0achinsung@gentoo ~/workspace/test/Debug $ time ./test \x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal 2m7.269s\x0d\x0auser 2m4.077s\x0d\x0asys 0m0.025s\x0d\x0a\x0d\x0a前一次为进行inline优化的情形,后一次为没有作inline优化的情形,两次结果相差不大,甚至各项指标后者还要好一些,不知是何缘由...
可以使用C语言标准库中的srand()和rand()来生成随机数,同时要生成1~99之间的随机数,只需要将生成的随机数与99整除,取其余数+1即可保证所有产生的随机数在[1,99]的区间之内。示例代码如下:
#includestdio.h
#includestdlib.h
#includetime.h
int main()
{
int a,i;
srand((unsigned)time(NULL));//初始化随机数
for(i=0;i200;i++)
{
a=rand()%99+1;//随机数的产生调用rand()函数
printf("%d\t",a);
}
printf("\n");
return 0;
}
#include
stdlib.h
#include
stdio.h
#include
time.h
void
main()
{
int
i,count[100];
for(i=0;i100;i++)
{count[i]=random(100);//设定
取值范围
,这表明
随机数
是0-100之间取
printf("%d\n",count[i]);
}
}