快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python常用函数讲解 python的基本函数

pytorch 常用函数参数详解

1、torch.cat(inputs, dim=0) - Tensor 

专注于为中小企业提供成都做网站、成都网站建设、成都外贸网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业善左免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

参考链接:

[Pytorch] 详解 torch.cat()

Pytorch学习笔记(一):torch.cat()模块的详解

函数作用:cat 是 concatnate 的意思:拼接,联系在一起。在给定维度上对输入的 Tensor 序列进行拼接操作。torch.cat 可以看作是 torch.split 和 torch.chunk 的反操作

参数:

inputs(sequence of Tensors):可以是任意相同类型的 Tensor 的 python 序列

dim(int, optional):defaults=0

dim=0: 按列进行拼接 

dim=1: 按行进行拼接

dim=-1: 如果行和列数都相同则按行进行拼接,否则按照行数或列数相等的维度进行拼接

假设 a 和 b 都是 Tensor,且 a 的维度为 [2, 3],b 的维度为 [2, 4],则

torch.cat((a, b), dim=1) 的维度为 [2, 7]

2、torch.nn.CrossEntropyLoss()

函数作用:CrossEntropy 是交叉熵的意思,故而 CrossEntropyLoss 的作用是计算交叉熵。CrossEntropyLoss 函数是将 torch.nn.Softmax 和 torch.nn.NLLLoss 两个函数组合在一起使用,故而传入的预测值不需要先进行 torch.nnSoftmax 操作。

参数:

input(N, C):N 是 batch_size,C 则是类别数,即在定义模型输出时,输出节点个数要定义为 [N, C]。其中特别注意的是 target 的数据类型需要是浮点数,即 float32

target(N):N 是 batch_size,故 target 需要是 1D 张量。其中特别注意的是 target 的数据类型需要是 long,即 int64

例子:

loss = nn.CrossEntropyLoss()

input = torch.randn(3, 5, requires_grad=True, dtype=torch.float32)

target = torch.empty(3, dtype=torch.long).random_(5)

output = loss(input, target)

output

输出为:

tensor(1.6916, grad_fn=NllLossBackward)

Python内置turtle海龟库函数讲解 4

一、海龟状态函数

1、显示海龟

showturtle()或st()

无参数直接调用

2、隐藏海龟

hideturtle()或ht()

无参数直接调用

3、返回海龟的状态(True或False)

isvisible()

无参数直接调用

二、外观函数

1、改变海龟的外形或返回当前海龟形状

shape(name)

默认的参数是:"arrow", "turtle", "circle", "square", "triangle", "classic"。

2、设置海龟尺寸模式

resizemode(rmode)

参数:默认值("auto", "user", "noresize")

3、调整海龟的大小或返回当前大小参数值

shapesize(wid,len,outline)或turtle.sieze(wid,len,outline)

参数 wid 正数 len 正数 outline正数

4、设置或返回当前的剪切因子

shearfactor()

参数: shear 实数

5、设置倾角

settiltangle(angle)

参数:angle角度和海龟朝向不同

6、设置海龟与朝向的夹角

tilt(angle)

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~

Python常用函数三有哪些?这7个函数使用频率最高,总算搞明白了

1.1 例如:print(hex(2))案例

1.2 输出函数:print(hex(2))

1.3 输出结果:0x2

1.4 解析说明:返回16进制的数。

2.1 例如:print(chr(10))案例

2.2 输出函数:print(chr(10))

2.3 输出结果:0o12

2.4 解析说明:返回当前整数对应的ASCll码

3.1 例如:print(ord("b"))案例

3.2 输出函数:print(ord("b"))

3.3 输出结果:98

3.4 解析说明:返回当前ASCll码的10进制数

4.1 例如:print(chr(97))

4.2 输出函数:print(chr(97))

4.3 输出结果:b

4.4 解析说明:返回当前ASCll码的10进制数。

案例一:给你一个字符串,s = 'hello kitty'

1.1 输出函数:print(s.capitalize())

1.2 输出结果:0x2

1.3 解析说明:返回16进制的数。

2.1输出函数:print(s.replace('kitty','kuang'))

2.2 输出结果:hello kuang

2.3 解析说明:替换功能,将kitty换成kuang。

2.4 输出函数:print(s.replace('4','KK'))

2.5 输出结果:12KK12KK

2.6 解析说明:所有的4都替换成KK

2.7 输出函数:print(s.replace('4','KK'))

2.8 输出结果:12KK12KK124

2.9 解析说明:将前两个的4替换成go

案例一:给你一个字符串,ip = '192.168.1.1'

3.1 输出函数:print(ip.split(','))

3.2 输出结果:['192.168.1.1']

3.3 解析说明:将字符串分割成列表

案例一:给你一个字符串,ip = '192.168.1.1'

3.3 输出函数:print(ip.split(',',2))

3.4 输出结果:['192.168.1.1']

3.5 解析说明:从第二个开始分割成列表

Python的函数都有哪些

【常见的内置函数】

1、enumerate(iterable,start=0)

是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。

2、zip(*iterables,strict=False)

用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。

3、filter(function,iterable)

filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。

4、isinstance(object,classinfo)

是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,

返回True。如果object不是一个给定类型的的对象, 则返回结果总是False

5、eval(expression[,globals[,locals]])

用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。

【常用的句式】

1、format字符串格式化

format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。

2、连接字符串

常使用+连接两个字符串。

3、if...else条件语句

Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。

4、for...in、while循环语句

循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。

5、import导入其他脚本的功能

有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。


文章题目:python常用函数讲解 python的基本函数
网站网址:http://6mz.cn/article/doogdhh.html

其他资讯