快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

python边缘检测函数 python边缘检测算法

如何理解这段python程序

convolve 这个函数应该是 输入的numpy.array,按照权值weight,

创新互联专注为客户提供全方位的互联网综合服务,包含不限于成都网站设计、成都网站制作、襄城网络推广、微信小程序开发、襄城网络营销、襄城企业策划、襄城品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;创新互联为所有大学生创业者提供襄城建站搭建服务,24小时服务热线:18982081108,官方网址:www.cdcxhl.com

以(i,j)点的邻域 行列式(i:i+w,j+j+h)和行列式wight进行 行列式相乘 得到的结果为新的(i,j)

说白了就是权值的相加减的问题,梯度不剃度我就不知了额

3种python3的canny边缘检测之静态,可调节和自适应

先看高级版的python3的canny的自适应边缘检测:

内容:

1 canny的边缘检测的介绍。

2 三种方法的canny的边缘检测,由浅入深地介绍:固定值的静态,可自调节的,自适应的。

说明:

1 环境:python3.8、opencv4.5.3和matplotlib3.4.3。

2 图片:来自品阅网正版免费图库。

3 实现自适应阈值的canny边缘检测的参考代码和文章:

上述的代码,本机均有报错,故对代码进行修改,注释和运行。

初级canny:

1 介绍:opencv中给出了canny边缘检测的接口,直接调用:

即可得到边缘检测的结果ret,其中,t1,t2是需要人为设置的阈值。

2 python的opencv的一行代码即可实现边缘检测。

3 Canny函数及使用:

4 Canny边缘检测流程:

去噪 -- 梯度 -- 非极大值抑制 -- 滞后阈值

5 代码:

6 操作和过程:

7 原图:

8 疑问:

ret = cv2.canny(img,t1,t2),其中,t1,t2是需要人为设置的阈值,一般人怎么知道具体数值是多少,才是最佳的呀?所以,这是它的缺点。

中级canny:

1 中级canny,就是可调节的阈值,找到最佳的canny边缘检测效果。

2 采用cv2.createTrackbar来调节阈值。

3 代码:

4 操作和效果:

5 原图:

高级canny:

1 自适应canny的算法:

ret = cv2.canny(img,t1,t2)

即算法在运行过程中能够自适应地找到较佳的分割阈值t1,t2。

2 文件结构:

3 main.py代码:

4 dog.py代码:

5 bilateralfilt.py代码:

6 原图:

7 效果图:本文第一个gif图,此处省略。

小结:

1 本文由浅入深,总结的很好,适合收藏。

2 对于理解python的opencv的canny的边缘检测,很有帮助。

3 本文高级版canny自适应的算法参考2篇文章,虽然我进行代码的删除,注释,修改,优化等操作,故我不标注原创,对原作者表达敬意。

4 自己总结和整理,分享出来,希望对大家有帮助。

python库skimage 实现canny边缘探测

请参考: Canny算法python手动实现

请参考: Canny边缘检测算法原理及opencv实现

skimage.feature.canny(image, sigma=1.0, low_threshold=None, high_threshold=None, mask=None, use_quantiles=False)

sigma:高斯滤波器的标准差

low_threshold:Canny算法最后一步中,小于该阈值的像素直接置为0

high_threshold:Canny算法最后一步中,大于该阈值的像素直接置为255

边缘检测之孤立点检测及Python实现

边缘即指图像中连接在一起的像素值发生突变的像素点的集合,故边缘检测则为检测出图像中所有的边缘

根据边缘像素的像素值突变的特性,可以想象到 导数 是一种即为有效的手段。而在图像中的像素值是离散的值,故在实际边缘检测算法中采用 差分 来近似导数。

即 一阶导数

而对于 二阶导数

又根据一阶导数的差分公式可得

而对于上式,可知其为关于 的差分,故 可得到关于 的差分

综上可知

在图像中,灰度值的变化是双向的—— 轴与 轴。换句话说,在检测边缘像素点时,需要考虑到两个方向的梯度。而拉普拉斯算子在二维空间的表达式为

即为两个方向上的二阶导数之和,而二阶导数相对于一阶导数对于像素点的变化更为敏感,则应用拉普拉斯算子可十分有效的检测到孤立点。当然,也正因为拉普拉斯算子对于变化十分敏感,噪声对其的影响较大。

根据1.2中二阶导数的推导式,可得拉普拉斯算子如下

在点 计算的拉普拉斯算子的绝对值大于指定的阈值时(即该点的像素值变化明显),则认为该点为边缘点;对于输出图像中该位置为亮点。否则,为暗点。表达式如下

在计算图像中的一阶导数与二阶导数时,空间滤波器是常用计算方法。计算过程为模板系数与在计算点处模板所对应的像素点的灰度值的乘积之和。当模板系数之和为 时,表示对于恒定灰度区域计算的模板想要为 。

空间滤波器模板

对应灰度值

两个矩阵元素对应相乘相加则为拉普拉斯算子

click me!


分享题目:python边缘检测函数 python边缘检测算法
文章源于:http://6mz.cn/article/doodgop.html

其他资讯